

UNCERTAINTY AND VALIDATION OF URBAN SCALE MODELLING SYSTEMS APPLIED TO SCENARIO ANALYSIS IN TUSCANY, ITALY

<u>Matteo Carpentieri</u> Paolo Giambini Andrea Corti

11th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes Cambridge, UK, 2nd July, 2007

Dipartimento di Energetica "Sergio Stecco" Università degli Studi di Firenze

Dipartimento di Ingegneria dell'Informazione Università degli Studi di Siena

Introduction

Phase 1: Preliminary study – concluded

Year 2000 inventory – Analysis of critical factors – Preliminary sensitivity analysis, validation and uncertainty – Pollutants: PM₁₀, NO_x, SO_x

Phase 2: Scenario analysis – in progress

Year 2003 inventory – 2012 scenarios: BAU and modified – Pollutants: PM₁₀, NO_x

Phase 3: Improvements - ???

Year 2005 inventory – new scenarios – other pollutants – chemical mechanisms – multi-scale approach

Modelling Systems - 1

Modelling Systems - 2

Modelling Systems - 3

Validation and Uncertainty

Monitoring networks of Florence, Prato and Pistoia:

25 monitoring stations (24 NO₂, 17 PM₁₀ and 9 SO₂)

Models Evaluation and Validation

<u>Validation</u>: method based on the use of statistical indices derived from the BOOT (Hanna, 1989), the MVK(Olesen, 1995 & 2005) and the indices of Poli & Cirillo(1993) - MEAN, BIAS, FB, SIGMA, FS, COR, FA2, NMSE, WNNR, NNR

	Pollutant	$\mathbf{Quality}$	Quality	Directive
Quality objectives and accontability		indicator	objective	
Quality objectives and acceptability	SO_2 , NO_2 , NO_x	Hourly mean	50-60%	1999/30/EC
criteria :		Daily mean	50%	
(1) Chang & Hanna criteria (2004)		Annual mean	30%	
	PM, Pb	Annual mean	50%	
FA2>0.5, -0.3 <fb<0.3, nmse<4<="" th=""><th>CO</th><th>8-h mean</th><th>50%</th><th>2000/69/EC</th></fb<0.3,>	CO	8-h mean	50%	2000/69/EC
(2) Quality objectives of the EEC directives	Benzene	Annual mean	50%	
based on the results "accuracy"	Ozone	8-h daily	50%	2002/3/EC
based on the results accuracy		maximum		
		Hourly mean	50%	

Uncertainty analysis: top-down method (Colvile et al. 2002) the single error sources are not considered, but the overall error is quantified by means of a high number of measures sufficiently representative of the phenomenon

Meteorological data

Emissions – Line Sources

LINE SOURCES

Schematization: 79 straight-line segments

Hour-by-hour EMISSIONS: provided by IRSE regional inventory

Emissions – Point sources

POINT SOURCES

15 plants 87 inclustrial stacks

Emissions and geometrical parameters retrieved from IRSE regional inventory

Emissions – Area sources

<u>GRID SOURCE</u>

1x1 km2 cell Hour-by hour emissions by IRSE

Model results

All the sources

Model results

All the sources

Model results

All the sources

Model Intercomparison

Monitoring Station	Measurements	ADMS	CGPL	CGSA
FI – Montelupo Pratelle	28.6	4.2	11.1	8.2
FI – Montelupo Don Milani	31.8	8.4	9.7	7.8
FI – Scandicci Buozzi	47.5	18.7	29.0	20.4
FI – Bassi	37.8	18.8	30.3	26.1
FI – Boboli	30.7	20.3	26.6	20.9
PO – Fontanelle	36.9	11.9	23.9	15.0
PT – Montale	32.2	10.6	20.9	15.2

FB: 0.84 (CGSA) - 0.61 (CGPL)

COR: 0.25 (CGPL) - 0.62 (ADMS)

Table 1: NO₂ annual mean concentrations $[\mu g/m^3]$ – background monitoring stations

Monitoring Station	Measurements	ADMS	CGPL	CGSA
FI – Empoli Ridolfi	58.2	25.0	11.5	11.1
FI – Mosse	66.7	23.9	32.1	27.7
FI – Rosselli	86.0	36.2	27.8	23.1
FI – Gramsci	69.1	23.9	26.4	21.2
PO – Ferrucci	48.6	50.1	30.9	21.2
PO – Strozzi	49.5	18.2	30.1	22.2
PT – Zamenhof	38.6	20.2	25.2	20.6

DiffierT

Background

FA2: 0.27 (CGSA) - 0.60 (CGPL)

NMSE: 1.12 (CGSA) - 0.65 (CGPL)

Table 2: NO₂ annual mean concentrations $[\mu g/m^3]$ – urban monitoring stations

Model Intercomparison

Monitoring Station	Measurements	ADMS	CGPL	CGSA
FI – Scandicci Buozzi	2.80	1.44	2.22	1.53
FI – Bassi	3.78	1.33	2.44	1.85
FI – Boboli	2.93	1.52	2.09	1.46
PT – Montale	3.12	0.43	0.81	0.45

Table 3: SO₂ annual mean concentrations $[\mu g/m^3]$ – background monitoring stations

SO ₂

FB: 0.77 (ADMS) to 0.43 (CGPL)

FA2: 0.50 (CGSA) to 0.67 (CGPL)

NMSE: 0.82 (ADMS) to 0.35 (CGPL)

Traffic

Background

Monitoring Station	Measurements	ADMS	CGPL	CGSA
FI – Empoli Ridolfi	3.05	1.26	1.04	0.79
FI – Mosse	2.72	2.21	3.31	2.39

Table 4: SO₂ annual mean concentrations $[\mu g/m^3]$ – urban monitoring stations

Model Intercomparison

Dooleanouroe	
	L
-221GX010011010	
	1

	· · · ·			
Monitoring Station	Measurements	ADMS	CGPL	CGSA
FI – Calenzano Boccaccio	38.1	1.2	2.9	2.1
FI – Montelupo Pratelle	46.7	0.5	1.7	1.4
FI – Montelupo Don Milani	31.1	1.6	1.6	1.4
FI – Bassi	42.6	2.4	3.6	3.2
FI – Boboli	37.6	2.7	2.9	2.4
PO – Fontanelle	39.5	1.2	2.1	1.5
PT – Montale	53.6	1.1	1.7	1.2

FB: 1.80 (CGSA) to 1.76 (ADMS)

FA2: 0.00

NMSE: 18.0 (CGSA) to 14.1 (CGPL)

Table 5: PM_{10} annual mean concentrations $[\mu g/m^3]$ – background monitoring stations

Monitoring Station	Measurements	ADMS	CGPL	CGSA
FI – Empoli Ridolfi	26.0	3.4	1.9	1.6
FI – Mosse	38.3	3.5	4.1	3.6
FI – Rosselli	47.3	4.9	3.3	2.9
FI – Gramsci	52.0	3.3	3.0	2.5
PO – Ferrucci	30.3	6.3	2.9	2.0
PO – Strozzi	55.4	2.3	2.9	2.2

DifferT

Table 6: PM_{10} annual mean concentrations $[\mu g/m^3]$ – urban monitoring stations

<u>Urban Backs</u>	<u>Rural Bac</u> Iround	<u>kground</u>	Urban 1	<u>Iraffic</u> Urban I	<u>Background</u>
Monitoring Station	FI – Boboli	FI - Settignano	FI – Mosse	FI – Scandicci Buozzi	
FB	0.37	0.54	0.93	0.74	
COR	0.19	0.14	0.16	0.35	
FA2	0.45	0.33	0.28	0.40	
NMSE	1.42	2.24	1.64	1.22	

Table 7: Validation statistical indices for NO2 hourly time series

NO₂

Urban Background

Urban Background

Monitoring Station	FI – Boboli	FI – Scandicci Buozzi	FI – Mosse	FI – Via di Scandicc i
FB	0.62	0.39	0.17	0.08
COR	0.02	0.12	0.19	0.22
FA2	0.26	0.38	0.39	0.34
NMSE	4.47	2.11	2.25	2.11

Table 8: Validation statistical indices for SO₂ hourly time series

SO₂

Table 9: Validation statistical indices for PM10 daily time series

PM₁₀

Table 10: Accuracy, calculated according to the EC directive: all the monitoring stations

Precision in accordance with Colvile et al. (2002) method

	NO2	SO2	PM10
ADMS	51 %	73 %	76 %
CGPL	41 %	54 %	34 %
CGSA	37 %	61 %	37 %

Table 11: Calculated precision

Summary

Annual mean concentrations: the order of magnitude of NO2 and SO2 concentrations is correctly reproduced by the models. PM10 result is underestimated.

Statistical validation indices confirm this analysis; Chang & Hanna (2004) criteria are generally satisfied for FA2 and NMSE, not for FB (NO2 and SO2).

The accuracy criteria of EC directive are not satisfied due to a sistematic underestimation of the concentrations.

Hourly time series: despite the uncertainties, results show good agreement between observed and calculated concentrations. FB, FA2 and NMSE indices are rather close to the Chang & Hanna criteria (except for PM10)

1- Regional Background

The interaction with the bigger spatial scales (regional and continental scale) must be included in the simulations

2- Local scale effects

Main cause of the underestimation at the monitoring points placed inside complex urban geometry; it is appropriate to include the interaction with the smaller scales in order to improve efficiency of the validation study

3- Secondary pollution

It assumes fundamental significance, especially for PM10

Current and future work

New (updated) emission scenarios - year 2003 / 2005(?)

Inclusion of background concentrations

Smaller scale effects: main urban canyons

Chemistry module – secondary pollution Other models (CAMx – CMAQ -)

Acknowledgements:

Regione Toscana, Air Quality Department

CNR-IBIMET/LaMMA – Institute of Biometeorology (National Research Council), Meteorology and Environmental Modelling Laboratory

ARPAT – Regional Environmental Protection Agency of Tuscany, Department of Florence

THANK YOU FOR YOUR ATTENTION !

11th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes Cambridge, UK, 2nd July, 2007