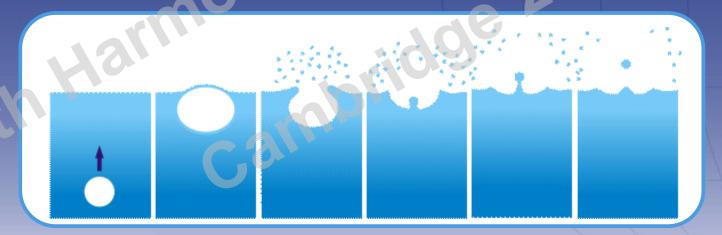
Hans van Jaarsveld & Dmitriy Klimov

ation to a levels in the Netherlands ation. Harmon was a second to the Netherlands at its second to

PM10 limits (directives 1999/30/EC and 96/62/EC):
- 40 ug/m3 annual average


- 50 ug/m3 daily average not exceeded 35 days / year

The EC thematic strategy on air pollution provides a possibility to discount contributions of natural substances for compliance purposes if determined with sufficient certainty

study tries to quantify the contribution of sea-generated particles to annual and daily average PM10 levels in the Netherlands

Sea salt particle generation

- Direct mechanisms
 - aerosol production by spumes at wind speeds higher than 7-11 m/s
- Indirect mechanisms (most important)
 - bursting air bubbles produced by breaking waves

Sea salt generation functions

salt generation functions For
$$Dp$$
 < 1µm according to Mårtensson et al. (2003).
$$\frac{dF_0}{d\log D_P} = 3.84 \times 10^{-6} U_{10}^{3.41} (A_k T_w + B_k)$$

 – dry particle diameter (µm), where

U10 — wind speed at 10-m height (m/s),

— water temperature (K),

Bk – polynomials of fourth power as a function of Dp.

um according to Monahan et al. (1986):

$$\frac{dF_0}{dr} = 1.373U_{10}^{3.41}r^{-3}(1+0.057r^{1.05})\times10^{1.19e^{-B^2}}$$

 particle radius at 80% relative humidity (µm), U_{10} – wind speed at 10-m height (m/s),

$$B = \frac{0.38 - \log r}{0.65}$$

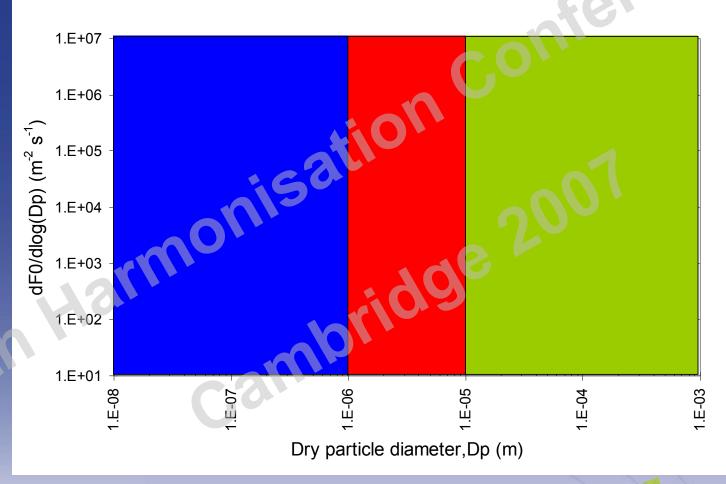
Sea salt generation functions

For $D_p > 5$ µm according Smith and Harrison (1998)

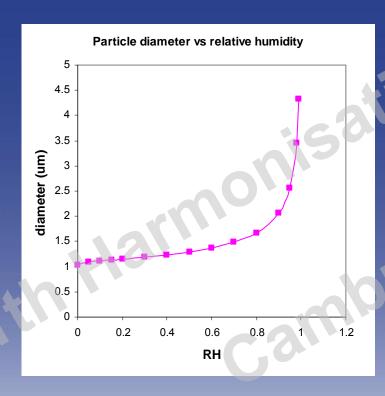
$$\frac{dF_0}{dr} = \sum_{i=1}^{2} A_i \exp\left\{-f_i \left[\ln\left(\frac{r}{r_{0i}}\right)\right]^2\right\}$$

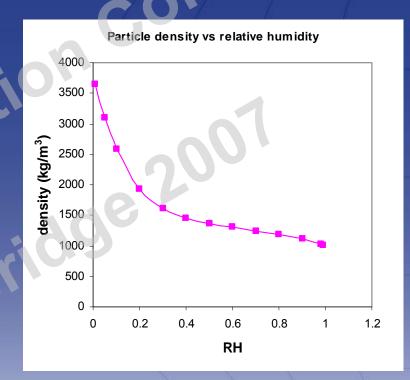
= particle radius at 80% relative humidity (µm),

 $r_{01} = 3 \ \mu \text{m} \text{ and } r_{02} = 30 \ \mu \text{m},$


 $f_1 = 1.5 \text{ and } f_2 = 1$

 $A_1 = 0.2 U_{10}^{3.5}$ and $A_2 = 6.8 \times 10^{-3} U_{10}^{-3}$,


 U_{10} = wind speed at 10m height (m s⁻¹).


Sea salt generation as a function of particle size

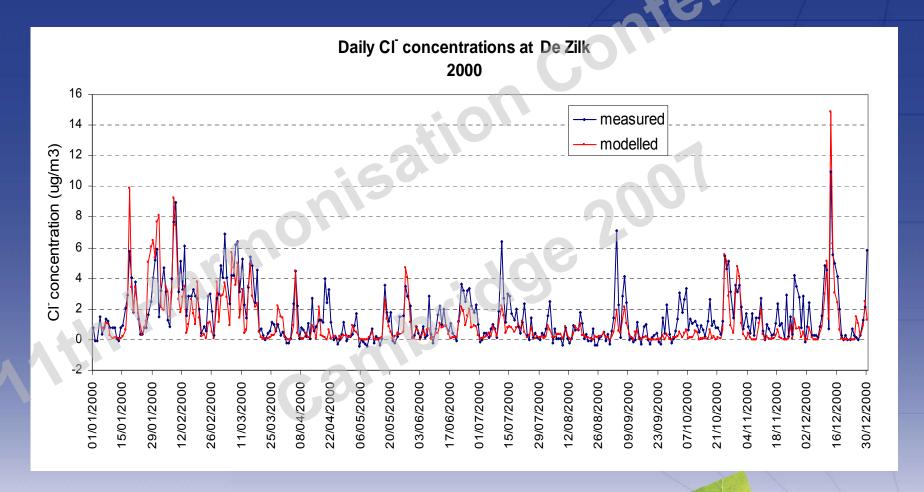
U10=9m/s; T=298 K; Rh= 80%

Properties of hygroscopic NaCl particles

OPS-ShortTerm model

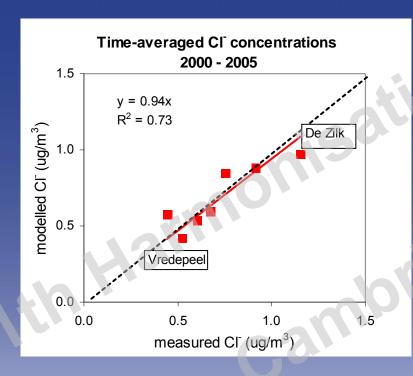
- The model is derived from the OPS long term model.

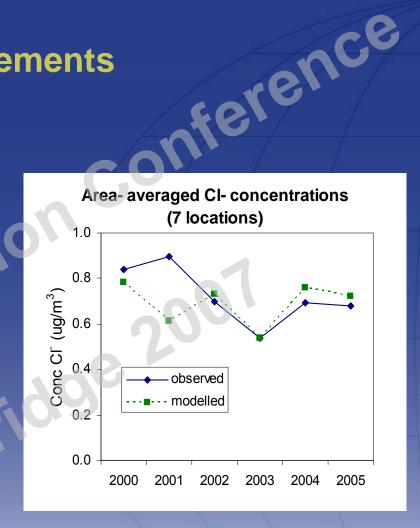
 The model combines a Gaussian to a trajectory model for transport over longer distances.
- Meteorological data from both land- and sea-based stations are used. This short term version is successfully used in the 'VELD' project to describe hourly and daily NH3 concentrations
- The model can handle the decending of plumes due to large particles
- The model uses up to 20 size-bins to describe the particle size distribution
- The model has been tested against Prairie grass, Kincaid and other data sets.


Measurements of sea-salt related compounds used as a reference for model calculations

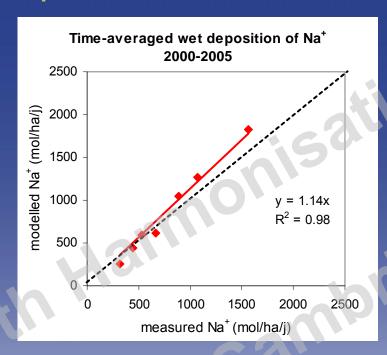
- Low Volume Sampler (LVS) system measuring CL⁻ at 7 locations since 1993 on a daily basis (from the Dutch LML network)
 - CL⁻ is depleted from sea salt by reactions with HNO₃ and H₂SO₄ forming gaseous HCI
 - Unknown cut-off size (probably between 2.5-10 pm)
 - Many observations below detection limit
- Wet deposition measurements of CL⁻ and Na⁺ at 15
 locations since 1988 on a 4-weekly basis (LML network)
 - Wet deposition concerns all particle sizes

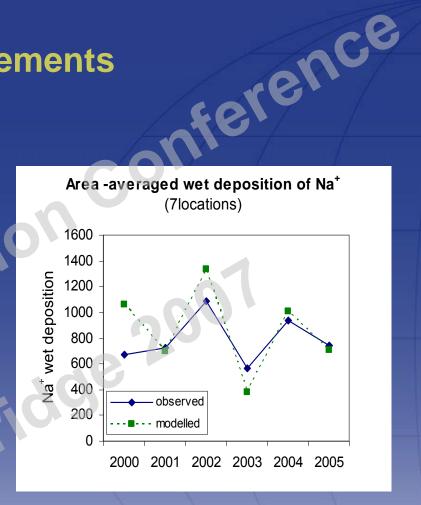
Stations with CI- measurements

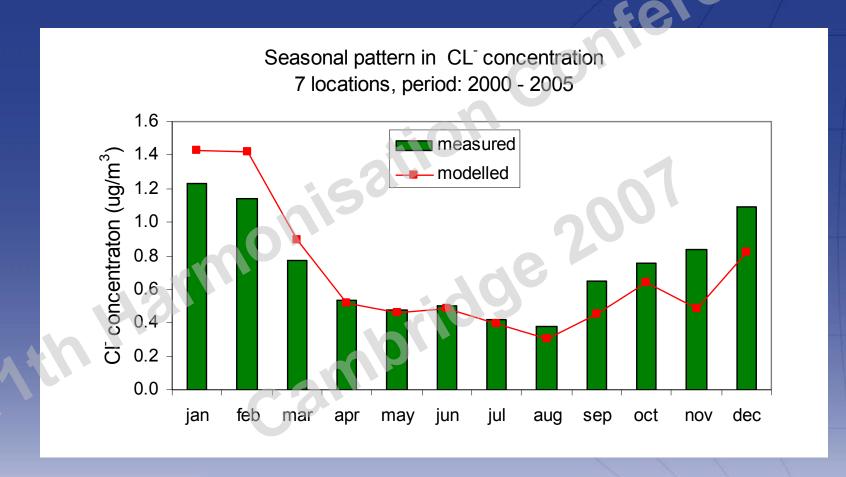


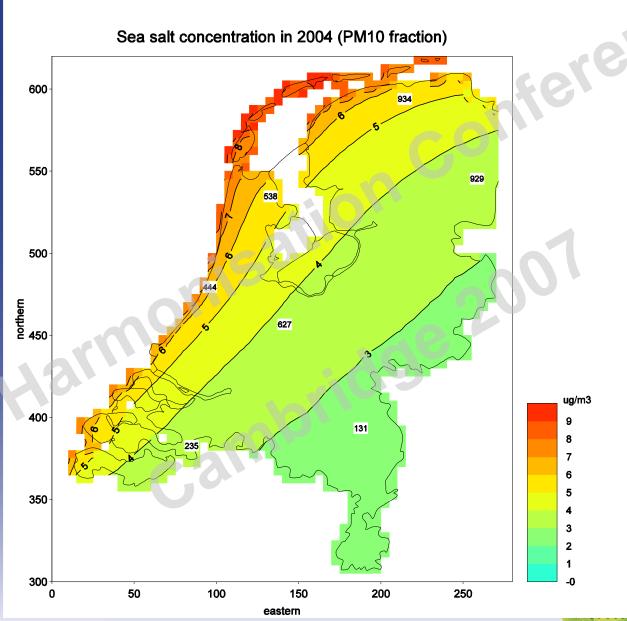

Measured and modelled Cl⁻ concentrations: daily averages at a coastal location

Comparison with measurements

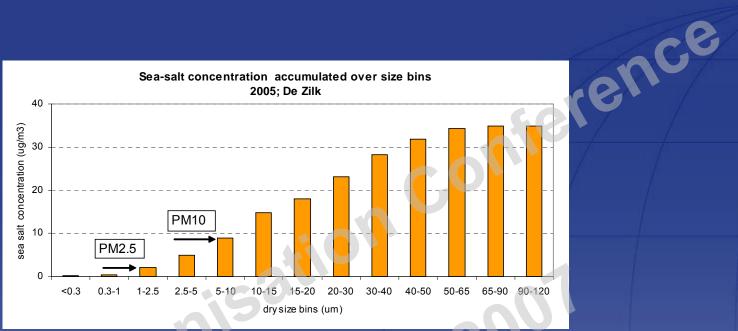

air concentrations of chloride

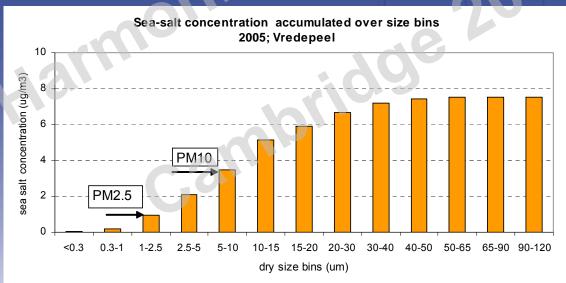



Comparison with measurements


wet deposition of Na+

Long term average seasonal pattern of Cl aerosol

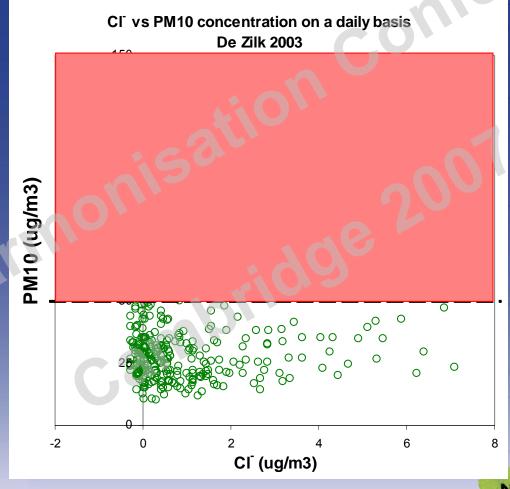

Agency

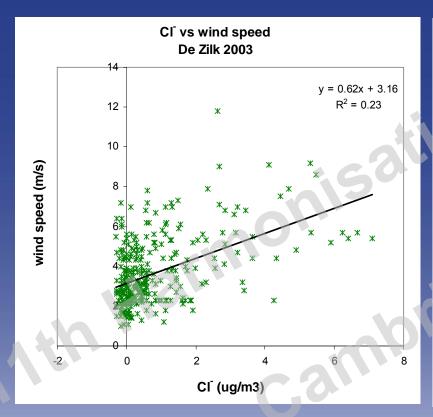

s Environmental

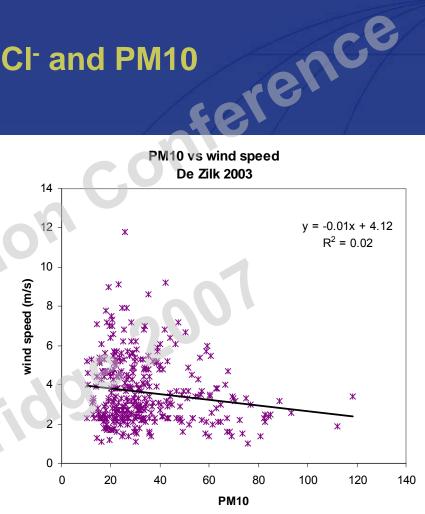
van Jaarsveld & Klimov, Sea salt contribution to PM10 levels

Average sea salt concentrations at 2 locations

	De Zilk	Vredepeel
	(coast)	(inland)
o!	atio	
size	conc.	conc.
μm	μg/m3	μg/m3
90/		.70
0-2.5	0.8	0.4
	3.0	
0-10	5.5	2.3
0-120	35.0	7.6




Impact of seasalt on exceeding the 50 ug/m3 daily limit


- Count number of 50 ug/m3 exceedances in measured daily mean PM10 data
- Calculate sea salt (10 um fraction) on a daily basis
- Substract sea salt concentration from PM10
- Count number of exceedances again

Impact of Cl⁻ on exceedances of 50 ug/m3 daily PM10 limit

Wind speed dependence of Cl⁻ and PM10

Contribution of sea salt to PM10 levels (coastal station)

	Annual ave	rage		Number of exceedence days		
	PM_{10}	Sea-salt	Contribution	PM10	Due to	Sea-salt
		PM_{10}	to annual		sea-salt	contribution
			average			
	$(\mu g/m^3)$	$(\mu g/m^3)$	(%)			(%)
	measured	modelled		measured	modelled	
				Ω		
1999	27.2	5.4	19.7	20	3	15
2000	28.4	5.8	20.5	25	5	20
2001	26.3	5.0	18.9	19	0	0.0
2002	30.1	5.5	18.4	31	1	3.2
2003	33.8	4.2	12.5	58	4	6.9
2004	28.6	5.8	20.4	23	0	0.0
2005	25.1	5.5	22.0	11	0	0.0
average	28.5	5.3	18.9	27	1.8	6.9

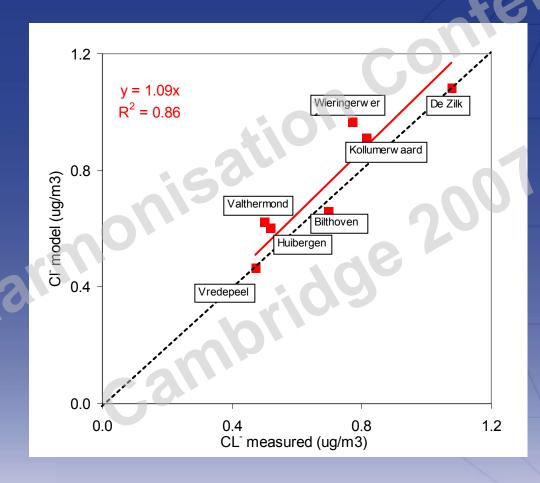
Contribution of sea salt to PM10 levels (rural station)

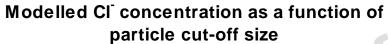
	Annual average			Number of exceedence days		
	PM10	Sea-salt	Contribution	PM10	Due to	Sea-salt
		PM10	to annual		sea-salt	contribution
			average			
	$(\mu g/m^3)$	$(\mu g/m^3)$	(%)			(%)
	measured	modelled		measured	modelled	
1999	31.6	2.2	6.8	34	1	2.9
2000	31.9	2.4	7.7	50	2	4.0
2001	32.5	2.0	6.0	39	1	2.6
2002	31.3	2.4	7.5	46	2	4.3
2003	40.9	1.7	4.1	98	4	4.1
2004	25.6	2.4	9.4	25	0	0.0
2005	24.8	2.3	9.4	16	0	0.0
average	31.2	2.2	7.3	44	1.4	3.3

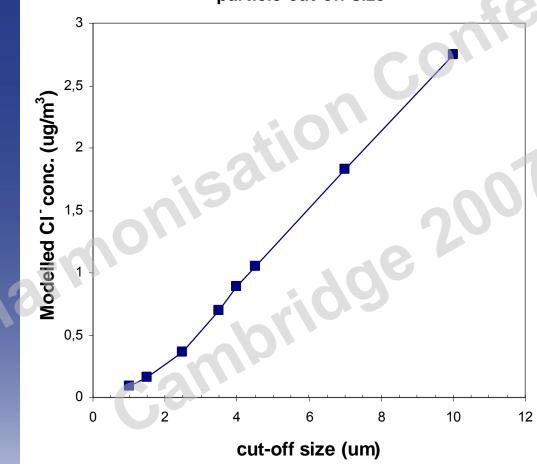
Uncertainties

- Emissions are very sensitive to the windspeed data used
 Reference mea
- cut-off size. Modelled values increase 25% if cutoff size is taken 1 µm higher

Conclusions


- Sea salt contributes significantly to average PM10 concentrations in the Netherlands:
 - 2-6 ug/m³ on an annual basis (7-20 % of PM10)
- Sea salt contributes hardly to exceedances of the 50 ug/m³ daily PM10 limit (0-5 days/yr)
- Current approach underestimates CL⁻ concentrations by 5% and overestimates wet deposition of Na+ by 15%
- Spatial gradients in air and precipitation are well reproduced
- The ill-defined cut-off size of the Low Volume Sampler system is a major uncertainty in the current approach


1th Harmonisation Conference


1th Harmonisation Conference

Measured vs modeled Cl⁻ concentrations (2004)

