

Harmo11 Conference, July 2007, Cambridge

Uncertainty mapping for air quality modelling and data assimilation

Bruce Denby¹, Ana Margarida Costa², Alexandra Monteiro², Agnes Dudek¹, Sam Erik Walker¹, Sef van den Elshout³ and Bernard Fisher⁴

 ¹ Norwegian Institute for Air Research (NILU), Kjeller, Norway
 ² CESAM & Department of Environment and Planning, University of Aveiro, Portugal
 ³ DCMR EPA Rijnmond, Schiedam, The Netherlands
 ⁴ Environmental Agency, Reading, UK

Norwegian Institute for Air Research

6th Framework Programme- Policy oriented Research Priority 8.1 Topic 1.5 Task 2

Introduction

Introduction

Sources of uncertainty

Uncertainty parameters

Uncertainty mapping

Conclusions

Norwegian Institute for Air Research

Introduction

Aim, background and applications
Sources of uncertainty

Uncertainty parameters

Model error Probability distribution functions Standard deviation and bias

Uncertainty mapping

Spatial distribution of model error Indicative uncertainty Uncertainty related to input data Using variance from spatial statistics Uncertainty in exceedances

Accounting for temporal covariance, Monte Carlo methods, probability of exceedance, uncertainty in data assimilation methods, etc...

Conclusions

Introduction

Introduction

Sources of uncertainty

Uncertainty parameters

Uncertainty mapping

Conclusions

Aim

Raise awareness and promote discussion on uncertainty mapping in air quality applications

Background

- Based on discussions and developments during the FP6 project Air4EU (www.air4eu.nl)
- Discussions on uncertainty and its mapping can be found in a number of Air4EU case studies, recommendation documents and cross-cutting issue reports
- Uncertainty maps are presented on the Air4EU mapping tool (www.air4eumaps.info)

Introduction

Introduction

Sources of uncertainty

Uncertainty parameters

Uncertainty mapping

Conclusions

Why use uncertainty maps?

- It is at the heart of the scientific method to express uncertainty in any result
- It is honest and transparent
- Provides information on model quality
- Better basis for decision making

Why do we NOT use uncertainty maps?

- Decision makers do not want to know about uncertainty
- There is not enough information for the uncertainty assessment
- It may reflect unfavourably on the models

Sources of model uncertainty

Introduction

Sources of uncertainty

Uncertainty parameters

Uncertainty mapping

Conclusions

Model description

Model formulation

chemistry, dispersion, etc.

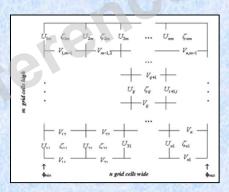
Numerical discretisation

numerical schemes, model resolution, etc.

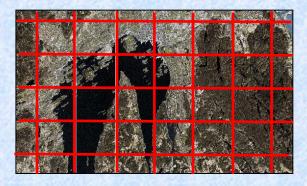
Input data

Emissions Meteorology Boundary conditions Surface, horizontal, etc. Monitoring data

Data assimilation


Representativeness

Spatial representativeness


model resolution, subgrid variability

Temporal representativeness

stochastic processes

Uncertainty parameters

Introduction

Range of parameters for assessing model error

Sources of uncertainty

Uncertainty parameters

Uncertainty mapping

Conclusions

Mean absolute error	MAE
Mean square error	MSE
Normalised mean square error	NMSE
Root mean square error	RMSE
Relative percentile error	RPE (EU directives)
Bias	BIAS
Average normalised absolute bias	ANB
Fractional bias	FB
Correlation	R ² , r
Standard deviation	SD
Normalised standard deviation	NSD
Regression coefficients	slope, intercept
Index of agreement	D
Fraction of predictions	FAC2

e.g. Chang and Hanna (2004), Borrego et al. (2007)

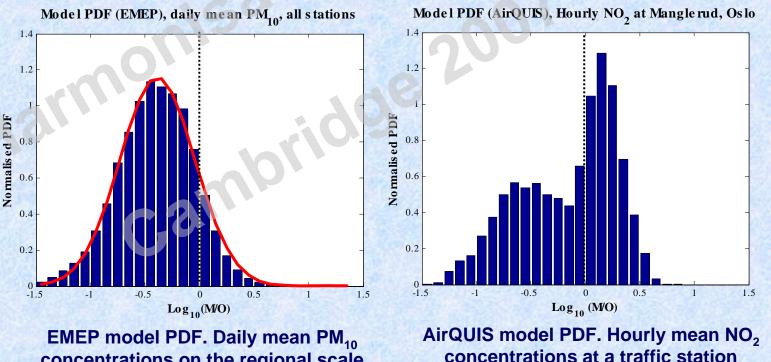
Norwegian Institute for Air Research

Model error is an example of poor spatial sampling of the PDF

Uncertainty parameters

Introduction

Sources of uncertainty


Uncertainty parameters

Uncertainty mapping

Conclusions

Probability distribution functions

- Are used in Bayesian approaches to uncertainty
- Describe the probable model result, given a 'true' or observed value (or visa versa)
- Contain all the uncertainty information
 - Can be used to derive other statistical parameters

Norwegian Institute for Air Research

Uncertainty parameters

Introduction

Sources of uncertainty

Uncertainty parameters

Uncertainty mapping

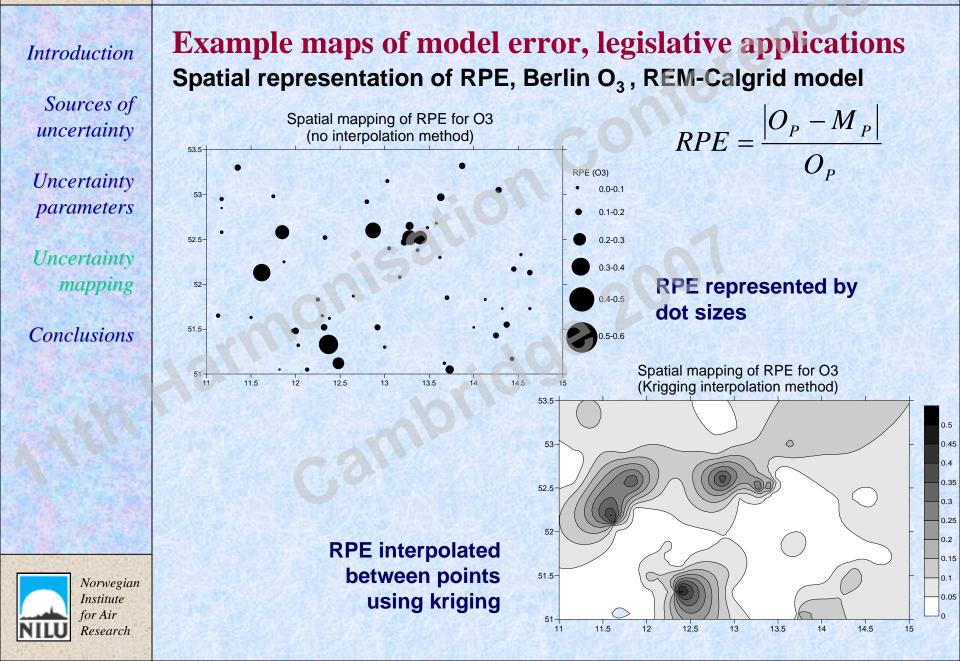
Conclusions

The use of standard deviation (SD) and bias

- A PDF is not easy to show in map form, so ...
- Use SD and bias to describe the normal PDF

NOTE: PDFs in air quality tend to be log-normal rather than normal

Standard deviation is useful because...


- It can be statistically extracted from any sample
- It is similar to RMSE
- It can by calculated from ensemble methods
- It can be derived from spatial statistical methods such as kriging

Bias must be included

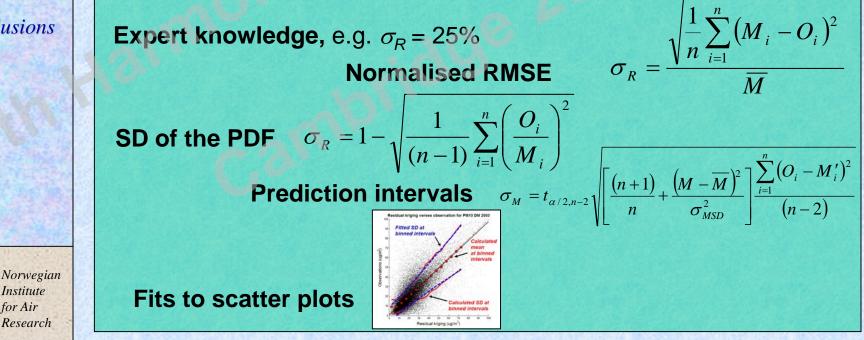
- Separately or implicitly through, e.g., RMSE
- If bias is known it should be removed

Introduction

Sources of uncertainty

Uncertainty parameters

Uncertainty mapping


Conclusions

Indicative uncertainty

- Presenting maps that are *indicative* of the standard deviation
- Generalised description of the standard deviation based on 0 an absolute and a relative standard deviation

$$\sigma_M(x, y) = \sqrt{\sigma_A^2 + \sigma_R^2 M(x, y)^2}$$

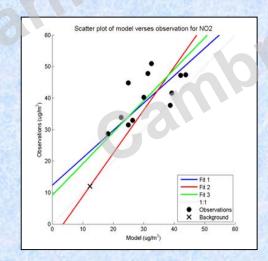
 σ_{R} and σ_{A} can be calculated using:

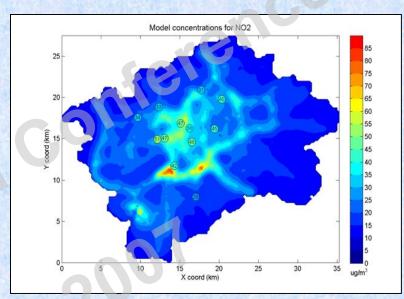
Introduction

Sources of uncertainty

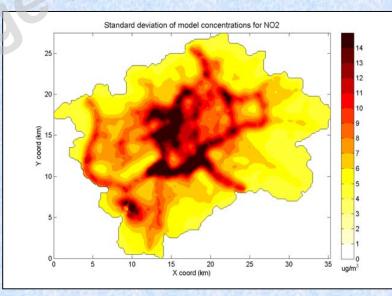
Uncertainty parameters

Uncertainty mapping


Conclusions



Example of an indicative uncertainty map Prague, annual mean NO₂, ATEM model


Based on normalised RMSE $\sigma_R = 27\%$

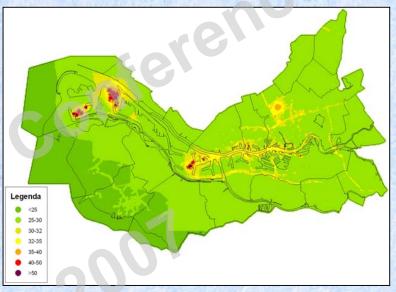
 $\sigma_A = 0$

Model

Uncertainty

Introduction

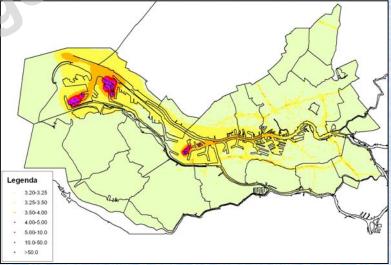
Sources of uncertainty


Uncertainty parameters

Uncertainty mapping

Conclusions

Application for scenario prediction


Predicted concentrations of PM₁₀ for 2010 in Rotterdam, using the Urbis model

Model prediction

Expert assessment of emission uncertainty in the various source sectors

⇒Spatial map of the emission scenario uncertainty

Uncertainty due to emissions

Introduction

Sources of uncertainty

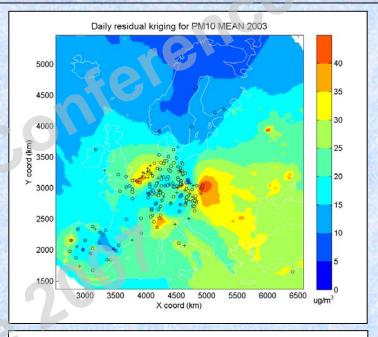
Uncertainty parameters

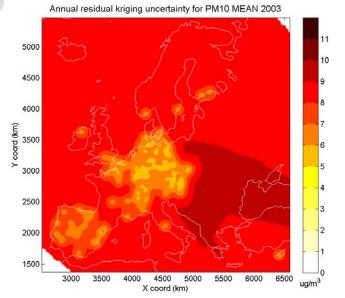
Uncertainty mapping

Conclusions

Spatial statistics

Maps may also be made using kriging, residual kriging or other statistical interpolation methods


> Residual kriging of annual mean rural background PM₁₀ using the EMEP model and Airbase stations


SD is calculated in these methods using the kriging variance

 $\sigma_M(x, y) = \sqrt{Var(x, y)}$

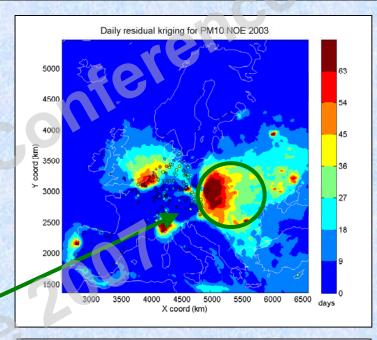
Uncertainty map

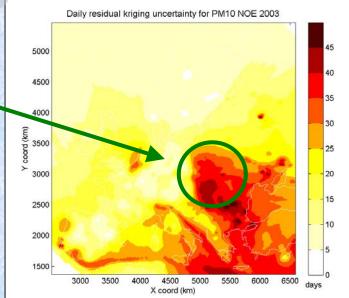
Introduction

Sources of uncertainty

Uncertainty parameters

Uncertainty mapping


Conclusions


Norwegian Institute for Air Research Uncertainty in exceedances Use daily mean uncertainty ⇒ probability of exceedance Use the annual mean uncertainty ⇒ spatial representativeness bias Calculate the uncertainty in the number of exceedance days

Large number of exceedance days (> 60 days)

Large uncertainty in the areas removed from observations (SD > 35 days)

Number of exceedances, and related uncertainty, of the daily mean EU limit for PM₁₀ rural background only

Conclusions

Introduction

Sources of uncertainty

Uncertainty parameters

Uncertainty mapping

Conclusions

General comments

- There is currently no established methodology, parameter or presentation method for communicating uncertainty
- It will be necessary to have a common parameter(s) for representing uncertainty if it is to be useful for intercomparison purposes
- Different mapping methods use different methodologies for uncertainty assessment

Recommendations

3

- Spatial interpolation of model error is not recommended
- Some indication of the uncertainty must always be given, preferably as maps but otherwise as a single value
- Present assessment maps with a contour or colour selection that is indicative of the uncertainty
 - Bias should be removed from maps when it is known

Conclusions

Introduction

Sources of uncertainty

Uncertainty parameters

Uncertainty mapping

Conclusions

Future challenges

- Convincing air quality modellers to include uncertainty in their maps
 - How many presentations of maps at this conference will include uncertainty?
- Establishing homogenous and accepted methodologies for determining and presenting spatial uncertainty
- Increase cooperation between atmospheric modellers and spatial statistical groups
- Inclusion of uncertainty in the entire process, from emissions to risk assessment
 - e.g. EU projects HEIMTSA and INTERESSE
- Convince decision makers that they should want to know about uncertainty
- Reformulation of directives and other legislation to properly include aspects of uncertainty