CRITICAL EVALUATION OF CZECH ODOUR DISPERSION MODEL COMPARISON WITH OTHER APPROACHES

Josef Keder Czech Hydrometeorological Institute

Overview

Motivation

- Adaptations of Czech SYMOS'97 model for odour modelling
- Comparison with advanced model procedure
- Results of comparison examples
 Conclusions, ideas for further work

Motivation – odours as a serious social problem

Harmo 11, 2. - 4.7.2007

Model adapted

- The gaussian dispersion model SYMOS'97, used as a reference modelling method in Czech, adapted for odour dispersion modelling http://air-climate.eionet.eu.int/databases/mds.html)
- Model designated for calculations of dispersion of passive buoyant, continuous release from single or multiple sources (point, area or line) sources.
- Five stability classes by Czech national stability scheme applied within the model.
- The system enables , among others, the calculation of maximal possible hourly concentration
- Complex terrain corrections based on digital terrain model included as a routine part of model calculations.

Adaptation of SYMOS'97 (1)

- Odour subjective perception by humans proportional to the instantaneous peak concentration of the odorant rather then to mean values (well known and documented in the literature anywhere)
- SYMOS model, similarly as other dispersion models of this class, is set for calculation of hourly mean concentrations
- The basic procedure how to modify the SYMOS for odour concentration: recalculation of hourly means reached in particular hours into corresponding peak values which might occur during these hours
 - Widely used peak-to-mean ratio (P/M ratio) approach (e.g. *Katestone Scientific*, 1998) selected as suitable solution of this task, (*Keder, 2003*)

Adaptation of SYMOS 97 (2)

- The main advantage of the proposed approach: most input data management and calculation procedures included in the SYMOS modelling system could be maintained.
- The procedure
 - fields of maximum possible hourly concentrations calculated from the input data on source parameters and meteorology
 - > corresponding stability category recorded for each grid value
 - → output concentration field is subsequently recalculated into peak values using the set of peak-to-mean ratio coefficients
 - coefficients value depends on the source type, stability class and on the distance of the reference point to the source

Set of P/M ratios, derived by Katestone Scientific (*Freeman and Cudmore, 2002*), has been selected and incorporated into model

Validation against measured data

- Presented at HARMO 10, Crete, 2005
- Result: despite of relative simplicity of adaptation procedure, the model provides reasonable results applicable in the practice
- At least for neutral stability and in flat terrain
- Validation for other conditions is of great interest

Problem: lack of approprite data sets
 Solution: comparison with some more sophisticated approach used

Model selected: ADMS 3.3

- ADMS, version 3.3, e.g. CERC, 1999 and later
- Advanced Gaussian model
- Fluctuation module included
- Computes concentration STDs, PDFs and percentiles
- Enables advanced modelling, among others odours

Comparison procedure - basic features

- Flat terrain, agricultural area, surface roughness 0.3 m
- Latitude 50⁰
- Area size: 1500 x 1000 m
- Stable, neutral and convective conditions
- Elevated point and ground-based area source

Parameters of sources – point source

Elevated point source

- Height 10m
- Diameter 1.5m
- Effluent temperature 25°C
- Exit velocity 4 m/s
- Emission rate 25 000 OU_e/s

Parameters of sources – area source

Ground-based area source

- Height 1 m
- Area 10x10 m
- Effluent temperature 20°C
- Exit velocity 1 m/s
- Emission rate 25 000 OU_e/s

Meteorology (ADMS default)

- Wind direction: west
- Wind velocity:
- 2 m/s for stable and convective, 5 m/s neutral
- Mixing height
- 900m convective, 800m neutral, 100m stable

Data compared

- SYMOS: maximum peak odour concentrations recalculated from hourly means by P/M ratio coefficients (SYMOS approach)
- ADMS: Percentile 99% taken as maximum peak concentration estimate
- Odour concentration 2D fields and ground concentraions profiles under plume axis compared

Point source profiles stable

Point source profiles neutral

Point source profiles convective

Area source profiles stable

Area source profiles neutral

Area source profiles convective

Conclusions and scope of future work

- Area size where odour could be perceived underestimted by SYMOS approach against ADMS
- Ground level peak odour concentrations mostly underestimated by SYMOS approach, in comparison with the ADMS model results (ADMS considered as more sophisticated)
- Possible remedies
- change set of P/M ratios appropriately, e.g. try to assess them from raios P99/C_{1h mean}
- include fluctuation module into SYMOS
- Further work to find new experimental data for validation

Thank you for your time!

nference