UNIVERSITY OF WEST MACEDONIA

DEPARTMENT OF ENGINEERING AND MANAGEMENT OF ENERGY RESOURCES Environmental Technology Laboratory

PREDICTING THE INDIVIDUAL EXPOSURE FROM AIRBORNE HAZARDOUS RELEASES BY RANS- CFD MODELS

J G Bartzis

T Sfetsos

A Andronopoulos

THE FUNDAMENTAL QUESTION

Can RANS CFD Models 'predict' individual exposure over any exposure times (especially the short ones) ?

THE PROBLEM

 A hazardous substance is released in the atmosphere at a constant release rate at a certain point for a certain time

zrenc

- The turbulent flow field is assumed stationary for the time of the release
- The precise (instantaneous) flow conditions of the time of the release are not known (by definition)

THE TOOL

A RANS - CFD model able to predict at all positions the the mean concentration the concentration variance the time scale of turbulence

Individual exposure estimation

\circ Individual exposure over $\Delta \tau$:

$$D(\Delta \tau) = \int_{0}^{\Delta \tau} C_{real}(t) \cdot dt \leq \left[\int_{0}^{\Delta \tau} C_{stationary}(t) \cdot dt\right]_{max} = D_{max}(\Delta \tau)$$

Maximum Individual Exposure

$$D_{\max}(\Delta \tau) = \Delta \tau \cdot C_{\max}(\Delta \tau) \qquad \qquad C_{\max}(\Delta \tau) = \frac{1}{\Delta \tau} \left[\int_{0}^{\Delta \tau} C_{stationary}(t) \cdot dt \right]_{\max}$$

 $C_{\max}(\Delta \tau)$ the peak time-averaged concentration

The peak time averaged concentration

o Bartzis et al (2007)

$$\frac{C_{\max}(\Delta \tau)}{\overline{C}} = f(I, \frac{\Delta \tau}{T_L}) \qquad I = \frac{\sigma_C^2}{\overline{C}^2}$$

The first correlation

$$\frac{C_{\max}\left(\Delta\tau\right)}{\overline{C}} = 1 + 1.5 \cdot I \cdot \left(\frac{\Delta\tau}{T_L}\right)^{-0.3}$$

Previous Work-I

IAEA Safety Guide, Safety Series, Atmospheric Dispersion in Nuclear Power Plant Siting, No. 50-SG-S3, Vienna, IAEA, 1980.

Previous Work -II

IAEA Safety Guide, Safety Series, Atmospheric Dispersion in Nuclear Power Plant Siting, No. 50-SG-S3, Vienna, IAEA, 1980.

TABLE A5. VALUES OF EXPONENT n IN $\chi_1/\chi_2 = (T_{s1}/T_{s2})^{-n}$ FOR VARIOUS PERIODS ACCORDING TO DIFFERENT AUTHORS: GROUND SOURCES [53]

				A REAL PROPERTY OF THE OWNER WATER OF THE OWNER OWNER OF THE OWNER	
Authors:		[86]*	[118]*	[119]	[110]
Atmosph stability	neric S		1		
of	3 min to 15 min	-	10.1	0.35	
durations	15 min to 1 h	0.2	40	C and	0.5
tes for	1 h to 4 h		D.3	A A	0.4
Valt	4 h to 1 day		112 3		
Influence of distance		No variation	Increase with distance	None between 200 and 800 m	Slight increases with distance between 1 km and 4 km
	Authors: Atmospheric stability fo suojtanp toj sanja Influence distance	Authors: Atmospheric stability 3 min to 15 min 15 min to 1 h 1 h to 4 h 4 h to 1 day Influence of distance	Authors: [86]* Atmospheric stability 3 min to 15 min 0.2 15 min to 15 min to 15 min to 1 h 0.2 1 h to 4 h 4 h to 1 day Influence of distance No variation	Authors: [86]* [118]* Atmospheric stability 3 min to 15 min 15 min 0.2 15 min to 15 min to 16 1 h 10 1 h 11 1 h 12 1 h 13 1 h 14 1 h 15 1 h 16 1 h<	Authors: [86]* [118]* [119] Atmospheric stability 3 min to 15 min 0.35 1 15 min to 1 h 0.2 1 1 h to 4 h 0.3 1 h to 1 day 0.3 Influence of distance No Increase with distance None between 200 and 800 m

• Expressions of $\chi = f(T_s)$ taken as a power law.

Previous Work-III

IAEA Safety Guide, Safety Series, Atmospheric Dispersion in Nuclear Power Plant Siting, No. 50-SG-S3, Vienna, IAEA, 1980.

TABLE A4. VALUES OF EXPONENT n IN $\chi_1/\chi_2 = (T_{s1}/T_{s2})^{-n}$ FOR VARIOUS PERIODS ACCORDING TO DIFFERENT AUTHORS: ELEVATED SOURCES [53]

Refs: [115]		[115]	[57, 116]	Sto Canaleysib"	[117]*		[97]	[86]*	
Atmos stabilit	pheric y	8	Very unstable	Stable	Neutral	Unstable	Stable		Lang I
Values for durations of	3 min to 15 min	0.12	0.65	0.52	0.35	0.4	0.25	0.3	0.7
	15 min to 1 h			0.52				0.5	
	1 h to 4 h	0.43	1157 8		and a	and a second	ath had		
	4 h to 1 day	0.86		· · ·				notion 10	
Influer distance	nce of ce	0			and the second s			Increase with distance	Decrease with distance

Expressions of χ = f (T_s) taken as a power law.

The Application: The FLADIS T16 field Experiment

Ammonia flashing near ground release

- Release rate 0.27 kg/s
- Jet direction: horizontal
- Release duration 20 min
- Average wind speed at 10 m 4.4 m/s
- Near neutral conditions
- Ambient temperature 16 Celcius
- Relative humidity 62 %

Cambridge, UK

The model ADREA

Mesoscale/local scale

- Stable/unstable ambient conditions
- One equation and two equation turbulence modeling
- Induced turbulence from moving objects (e.g. vehicles)
- One (dense/buoyant) pollutant
- 3-D RANS finite volume, transient
 - one/two phase release and dispersion
 - instantaneous/continuous releases
 - jets of arbitrary orientation (e.g. pipe exhaust, pipe/tank rupture etc)

erenci

- N passive substances reactive or not
 - CBM IV gas chemistry (up to 36 species)
 - radioactivity
 - moist atmosphere (dispersion on gas and water phase in the atmosphere)

The Modeling approach - I

o 3D domain 44x33x38
o Non-uniform logarithmic grid

• X=287m $\Delta x_{min} = 1.64m$, $\Delta x_{max} = 29m$ • Y=211m $\Delta y_{min} = 2.00m$, $\Delta y_{max} = 14.5m$ • Z=47.2m $\Delta z_{min} = 0.15m$, $\Delta z_{max} = 5m$

The Modeling approach - It

- **Concentration variance transport equation** (Andronopoulos et al ,2001)
- Two Equation Turbulence (k ζ) model (Bartzis,2005)
- Turbulent time scale :

Taylor Hypothesis and correlation with the streamwise length scale as given by Bartzis(1990)

Inlet conditions and geostrophic wind

The corresponding 1-D boundary layer(Wind speed velocity at 10m about 4.4m/s. Neutral conditions)

rence

The results -I

rence

The results -II

The Results - III

The results -IV

ence

July 2-5, 2007 Cambridge, UK

The Conclusions

- The present work represent the first attempt to estimate peak time averaged mean concentrations utilizing the RANS CFD models.
- The model results comparisons with the FLADIS T16 ammonia flashing release experiment are quite encouraging.
- The models will require in the future to be more refined in estimating concentration variance and turbulent integral scales.

nce

The Final Conclusion

<u>Question</u>

Can RANS CFD Models 'predict' individual exposure over any exposure times (especially the short ones) ?

<u>Answer</u>

Yes . We need RANS CFD Models reliable in predicting mean concentration, concentration variance and turbulent time scales