Comparing the impact of a road tunnel versus a road viaduct by means of an integrated exposure assessment

<u>Clemens Mensink</u>, Guido Cosemans, Inge Liekens, Rudi Torfs and Jean Vankerkom.

Centre for Integrated Environmental Studies Mol, Belgium

confidential – © 2005, VITO NV – all rights reserved

Outline

- Introduction
- Methodology
 - Emission calculations
 - Air quality modelling
 - Exposure calculations
- Results and discussion
- Conclusions

onferenci

Outline

200

- Introduction
- Methodology
 - Emission calculations
 - Air quality modelling
 - Exposure calculations
- Results and discussion Conclusions

<u>Steps</u>

Models and data

Emission models/inventories

Dispersion models

local, regional, chemical reactions

Exposure assessment

GIS based information on receptors at risk

Exposure-Response relationships

public health agriculture materials ecosystems

Critical loads

Market prices , CVM- studies , Transport Method studies, Shadow prices based on implicit values of policy makers .

Emission calculations Landsat T_s (12 August 1995) Emissies 1 - 10 20 - 30 30 - 60 10 - 20

confidential - © 20

90 - 139 (ton)

60 - 90

Dispersion calculations

• For every hour calculate:

 $C = C_{street} + C_{background}$

From a street canyon model (OSPM) From a Gaussian plume model (IFDM)

N

Schelde

Exposure to PM

Exposure to PM						
	Attributable cases	DALY	External costs (1 000 Eur)			
Acute cardiorespiratory mortality	750	131	31 000			
	(375 – 1 100)	(66 – 195)	(15 600 – 46 000)			
Resp. hospital	1 400	34	6 000			
admissons	(900 - 1 900)	(22 – 46)	(4 000 – 8 250)			
Cardiovascular hospital admissions	1 700	46	28 500			
	(1 150 –2 300)	(31 – 61)	(19 000 – 38 000)			
Bronchodilator use	1 900	2	75			
	(1 250 – 2 500)	(1,4 – 2,8)	(50 – 100)			
Prevalence of cough	1 100	1	48			
	(550 – 1 300)	(0,5 – 1,3)	(24 – 60)			
Lower resp. symptoms	350	3	2 ,8			
	(250 – 600)	(2 – 5)	(1,9 – 4,7)			
Resp. hospital admissons for COPD ^a	160 (50 – 280)	37 (11 – 63)	700 (200 – 1 200)			

Source: MIRA, 2001

conference Outline

ation

- Introduction
- Methodology
- Exposure calculations Results and discussion
- Conclusions,

Results

- What's the difference in exposure between a road tunnel and a road viaduct ?
- What's the impact in 2015?
 Current situation (2003)
 Autonomous scenario (2015)
 Oosterweel scenario (2015)

nferenci

Traffic Emissions

Scenario	NOx (tons/year)	PM ₁₀ (tons/year)
Viaduct scenario	201,2	8,15
Tunnel scenario	197,7	8,0
Ring road neighbourhood	709	31
Traffic in Flanders	87488	4384
140	Caup,	

Results

- What's the difference in exposure between a road tunnel and a road viaduct ?
- What's the impact in 2015 ?
 - Current situation (2003)
 - Autonomous scenario (2015)
 - Oosterweel scenario (2015)

nferenci

Model validation

-				
	PM10	PM10	NO2	NO2
	measured	computed	measured	computed
	µg/m³	µg/m³	µg/m³	µg/m³
Annual average	(39)	39	50	48
P50	34	34	48	46
P70	47	43	60	54
P80	56	50	68	60
P90	(71)	64	81	70
P95	86	78	94	81
P98	103	86	(109)	95
P99	118	99	126	105
MAX	251	115	230	168

Situation 2003

PM ₁₀ (µg/m ³)		
-	54.3 40	
	37	
	35	
	33	
	29.2	

Autonomous 2015

confidential - © 2005, VITO NV - all rights reserved

Situation 2003

PM ₁₀ (μg/m³)		
	54.3	
	40	
	37	
	35	
	33	
	29.2	

Oosterweel 2015

confidential - © 2005, VITO NV - all rights reserved

Changes in exposure are negligible: <0,1%

Absolute difference

Assumptions and caveats

- Emissions 2015 based on assumptions for fleet scenario and emission factors in 2015
- Population is assumed to remain unchanged in 2015
- Static approach for exposure: activity based modelling is needed in the future

Conclusions

- Compared to the impact of a viaduct, a tunnel with an exhaust height of 5 m. shows an *increase* in total exposure of 40%, whereas a tunnel with an exhaust height of 30 m. shows a *decrease* of 5%
- However, these differences are not very significant in absolute terms, because of the high background concentrations for PM₁₀ and low population density
- Exposure will decrease considerably in 2015 due to an expected sharp decrease in traffic emission factors, especially for PM₁₀

