Use of Eulerian Model outputs as background concentrations for Nitrate Predictions in CALPUFF system

Christelle Escoffier-Czaja¹ & Joseph S. Scire²

¹ London, UK, ² Lowell, MA, USA

11th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes Cambridge, UK - July 2-5, 2007

NITRATE – SECONDARY AEROSOLS -FINE PARTICULATE MATTERS COMPONENTS

- Adverse effect on Health
- Strong impact on visibility degradation in pristine areas (hygroscopic)
- Refinement in CALPUFF system NO₃ prediction

NO_x OXIDATION CALPUFF MESOPUFF II SCHEME

CALPUFF is a non-steady state dispersion model

- It has a choice of two chemistry schemes (MESOPUFF II and RIVAD) or a user entry for dissociation constant of each equation

- Each scheme resolves SO_2/SO_4 and NO_x/NO_3 chemistry parameterization

NO₃ FORMATION DEPENDS ON NH₃ CHEMISTRY

(1) $HNO_3(g) + NH_3(g) \leftrightarrow NH_4NO_3(a)$

Equation (1) is an equilibrium relationship, depending on T and RH and availability of NH₃

A second equations scavenging NH₃: SO₄ preferentially over NO₃

(2) $SO_4^{2-} + NH_3 (g) \rightarrow (NH_4)_2 SO_4$

(g) stands for gas, (a) stands for aerosol

NO₃/HNO₃ Equilibrium Depends on Temperature, Relative Humidity

here, total $TNO_3 = NO_3 + HNO_3$

(Stelson and Seinfeld, 1982) dissociation constant, applied in CALPUFF and POSTUTIL

USE OF NH₃ IN CALPUFF SYSTEM

- In CALPUFF code, NH₃ is constant (on a puff-bypuff basis)
 - 0.5 ppb for forest; 1 ppb for arid land; Up to 10 ppb for grassland (IWAQM, 1998)
 - NH₃ =0.5ppb or 1ppb, usually large enough to form NH₄NO₃ in every season, but may lead to too much overprediction
 - In reality, Ammonia not constant

JANUARY 2002

APRIL 2002

USE OF NH₃ IN CALPUFF SYSTEM (cont'd)

- In POSTUTIL, a CALPUFF post-processor has also the algorithm to repartition NO₃/HNO₃ with either
 - 1 Constant, monthly or hourly variable NH₃ gas
 - From Observations (Difficult very local and not always available)
 - From Model (source inventory of Ammonia still poor, large Domain)
 - applied hour by hour and receptor by receptor

CMAQ NH₃(gas) COMPARED TO OBSERVATIONS – daily averaged

January to May 2002 – Daily average at St Louis Supersite, Illinois

Quantile-Quantile PLOT

1th t

USE OF NH₃ IN CALPUFF SYSTEM (cont'd)

- In POSTUTIL, a CALPUFF post-processor has also the algorithm to repartition NO₃/HNO₃ with either
 - 1 Constant, monthly or hourly variable NH₃ gas
 - From Observations (Difficult very local and not always available)
 - From Model (CMAQ NH₃ too low compared to observations)
 - 2 Ammonia Limited Method (ALM) take into account the background concentrations and total NH_3 (gas + aerosol) = Total NH_3 = 2 SO₄ + NO₃ + NH_{3(gas)}
 - Model output of background pollutant (including time-varying Total NH₃.
 - Both applied hour by hour and receptor by receptor

DESCRIPTION OF ALM APPLICATION

- Refined the Nitrate prediction for an individual source
- Repartition the source + background (NO₃/HNO₃)_{all} once NH₃ necessary to scavenge SO₄ is removed from TNH₃

$$NO_{3_{src_after}} = \frac{TNO_{3_{src_after}}}{TNO_{3_{src+bckg}}} \times NO_{3_{src+bckg}}$$

with
$$TNO_{3_{source}} = TNO_{3_{src_after}} = TNO_{3_{src_before}}$$

and
$$TNO_{3} = NO_{3} + HNO_{3}$$

src_after = from source after repartitioning
src_before = from source before repartitioning
src+bckg = from source + background

USING CMAQ OUTPUTS FOR ALM

- VALIDATION of 2002 CMAQ run (ENVIRON)
- NO₃, SO₄ and total NO₃ (NO₃+HNO₃) comparison to observations from CASTNet and IMPROVE networks
- 52 CASTNet sites (23 in VISTAS states) weekly average
 - 46 IMPROVE sites (16 in VISTAS states) daily average (not shown)

CMAQ versus CASTNet

Quantile-Quantile PLOTS

CMAQ/Observation as function of elevation and months

CMAQ/CASTNET - NO3 Ratio of concentrations - weekly average

CMAQ data INPUT in POSTUTIL for NO₃ predictions

Pink – NO_3 CMAQ output

Mozurkewich, 1993 is used in CMAQ for NO₃/HNO₃ equilibrium parameterization

Blue – NO₃ POSTUTIL output: CMAQ concentrations input in POSTUTIL + CMAQ hourly $NH_3 = NH_3g+NO_3+2SO_4$

 Stelson and Seinfeld, 1982 is used in CALPUFF and POSTUTIL for NO₃/HNO₃ equilibrium parameterization

Quantile-Quantile PLOTS

CONCLUSION ON CMAQ EVALUATION

- SO₄ concentrations from CMAQ in very good agreement with observations (both CASTNet and IMPROVE)
- Total NO₃ (=NO₃+HNO₃) concentrations from CMAQ are in good agreement with observations (from CASTNet and IMPROVE)
- Conservative NO₃ concentrations predictions at most sites
- NO₃/HNO₃ equilibrium parameterization similar in CMAQ and CALPUFF system.

APPLICATION : NO₃ predictions monthly averaged time series

-Total NO₃ = $0.5\mu g/m^3$ (constant every hour of the year) -T₁, RH₁ hourly varying

Repartition using NH₃=0.5ppb or ALM (with CMAQ background) SIMILAR RESULTS – NOT AMMONIA LIMITED

-Total NO₃ = $0.5\mu g/m^3$ (constant every hour of the year) -T₂, RH₂ hourly varying

Repartition using NH₃=0.5ppb LARGER than when ALM (with CMAQ background) - MAY BE AMMONIA LIMITED

VALIDATION OF REPARTITIONING IN POSTUTIL – NO DEPOSITION

- Modelling of an individual source located west of Shenandoah NP (US)
- Look at the impact at 1 receptor in Shenandoah National Park
- Total Nitrate stay constant along the trajectory of a plume SCATTER PLOTS

CALPUFF RUN WITH DIFFERENT NH₃: 0.5ppb, 1ppb, 10ppb

- Show the cumulative effect of NH₃ used in CALPUFF on a puff-by-puff basis

CALPUFF RUN WITH DIFFERENT NH_3 : 0.5ppb, 1ppb, 10ppb then repartition in POSTUTIL with 10ppb (same results with 1ppb or 0.5ppb)

- Show conservation of Total NO₃, whatever NH₃ used in CALPUFF, results after repartitioning in POSTUTIL is the same

VALIDATION OF REPARTITIONING IN POSTUTIL - WITH DEPOSITION

- Same source model and impact in Shenadoah NP (US)
- Total Nitrate is not constant anymore along the trajectory

SCATTER PLOTS

CALPUFF RUN WITH DIFFERENT NH₃: 0.5ppb, 1ppb, 10ppb then repartition in POSTUTIL with 0.5ppb

- If repartitioning in POSTUTIL with lower or equal NH_3 than in CALPUFF – almost same NO_3 results with any NH_3 used in CALPUFF CALPUFF RUN WITH DIFFERENT NH₃: 0.5ppb, 1ppb, 10ppb then repartition in POSTUTIL with 10ppb

- If repartitioning in POSTUTIL with larger NH_3 than in CALPUFF – NO_3 predicted too small

CONCLUSION

- CMAQ NH₃(gas) can not be used to replace constant NH₃ in CALPUFF - too much underprediction at most sites analyzed
- Varying Background from CMAQ to be used in ALM: hourly SO₄, total NO₃ and total NH₃ = NH₃(gas)+NO₃+2SO₄ gives conservative prediction of NO₃ background concentrations in POSTUTIL at most sites
 - Create a good varying background (including total NH_3) to refine estimation of NO_3 concentration for an individual source
- HNO₃/NO₃ equilibrium used in CALPUFF give similar results as the one used in CMAQ
- Validation of HNO₃/NO₃ repartitioning after CALPUFF in POSTUTIL as long as Ammonia used in CALPUFF is large enough to avoid Ammonia limitation