11° Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes 2-5 July 2007 Cambridge, UK

MODELLING THE FLOW WITHIN AND ABOVE THE URBAN CANOPY LAYER

Efisio Solazzo, Silvana Di Sabatino, Rex Britter

Overview

- Addressing flow and dispersion at neighbourhood scale
- Model the Spatially averaged wind flow profiles using a fast response empirical model
- Features of real urban areas were incorporated, based on Digital Elevation Model (DEM) analyses
- Capability of the model in estimating real flow field was tested against published wind tunnel data

Methodology

- The model is based on the momentum balance equation between the canopy layer and the atmospheric layer above

- Improving an existing model, firstly derived for vegetative canopy for application to real urban canopy

- Improvements in terms of boundary conditions and conceptual description of the urban area

- DEM-based analysis of urban morphology

DEM analysis

- Morphological parameters derived from DEM analysis have been proved to be useful in describing flow and exchange in urban areas:
- λ parameters: λ_p (flow regimes, heat fluxes);
 λ_f (drag, wind profiles, heat fluxes);
- Sky view factor ψ: (exchange processes, heat and momentum fluxes)
- Morphological parameters are available for northern American and European cities;

DEM analysis

- Morphological parameters derived from DEM analysis have been proved to be useful in describing flow and exchange in urban areas:
- λ parameters: λ_p (flow regimes, heat fluxes);
 λ_f (drag, wind profiles, heat fluxes);
- Sky view factor ψ: (exchange processes, heat and momentum fluxes)
- Morphological parameters are available for northern American and European cities;

Morphological parameters

Ratio between the BUILT AREA and the TOTAL AREA

 λ_p

 λ_f Ratio between the FRONTAL AREA "seen" by the wind and the TOTAL AREA

Derivation of the mean wind profile U(z)

Momentum balance equation:

$$\frac{d}{dz}\left(l(z,\lambda_p)\frac{dU(z)}{dz}\right)^2 = \frac{\overline{C_{DH}}\lambda_f}{2H}U^2(z)$$

Boundary Conditions

 $U(z = bH) = U_{bH}, b \ge 1$ λ_f constant

Results: Evaluation over array of cubes

Results: Evaluation over array of cubes

Cube arrays $\lambda_p = 0.16$. Intermediate canopy

Results: Evaluation over array of cubes

Cube arrays $\lambda_p = 0.44$. Dense canopy

Evaluation using wind tunnel data

u∗∕u _H	Sparse	Intermed.	Dense			
(Hall et al. 1998)	0.20	0.23	0.26			
Our model	0.20	0.27	0.30			

C'sun

				10020		
λ_p	Averaged λ_f	Averaged H (m)	σ _H (m)	d (m)	z ₀ (DEM) (m)	u _* (model) (m s ⁻¹)
0.55	0.32	13.6	5.0	11.9	0.30	0.36

			100200			
λ_p	Averaged λ_f	Averaged H (m)	σ _H (m)	d (m)	z ₀ (DEM) (m)	u _* (model) (m s ⁻¹)
0.40	0.32	15.3	6.1	10.9	0.92	0.40

			10020			
λ_p	Averaged λ_f	Averaged H (m)	σ _H (m)	d (m)	z ₀ (DEM) (m)	u _* (model) (m s ⁻¹)
0.35	0.23	18.6	4.3	11.4	1.08	0.37

$\lambda_{\mathbf{p}}$	Averaged λ_f	Averaged H (m)	σ _H (m)	d (m)	z ₀ (DEM) (m)	u _* (model) (m s ⁻¹)
0.22	0.11	16.3	14.1	11.4	1.50	0.42

Conclusions and further work...

-A simple model for the flow over real urban neighbourhood was presented;

- Evaluation using wind tunnel data (for cube array) showed the capability of the simple model in predicting real flow field

- DEM technique was successively adopted for the purposes of providing realistic BC to the model

- The model showed the to be included into operational models for the assessing of urban air quality at the investigated scale

- Evaluation of the model using full-scale data is currently under investigation

11° Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes 2-5 July 2007 Cambridge, UK ference

Thanks to

1th Harl

Silvana Di Sabatino (University of Lecce, Italy) and

Rex Britter (University of Cambridge, UK) cambridge 200

