Fotios Barmpas, loannis Ossanlis and Nicolas Moussiopoullos

Aristotle University of Thessaloniki
Laboratory of Heat Transfer and Environmental Engineering
$>$ The application of photo-catalytic materials on the walls and/or the ventilation system of Road Tunnels was proposed as an alternative, potential way for the reduction of traffic emitted NO_{x}
DIn addition, the study of these effects on the dispersion in Road Tunnels will lead to better planning in the vicinity of emergency response scenarios
$>$ As a first step, it was decided to study the dispersion inside Road Tunnels taking into account the aerodynamic effects due to the motion of vehicles
-The interaction between the Road Tunnel walls and the moving vehicles is expected to effect significantly the dispersion mechanism downstream of the moving vehicles

Jsjucoclucijosj

\Rightarrow The main parameters expected to influence the dispersion inside the road tunnels were the number of vehicles, the type of the vehicles (passenger, HDV etc), the speed of the vehicles, the type of the tunnel (uni or bi-directional)
-As a first step a simple, relatively small road tunnel was selected, which had initially been proposed as a test bed for an experiment, in order to study the main features of the problem

-Located in the heart of the city centre of Rome
-Bi - directional
-Three lanes, two for cars and one for buses

لetsuodology
-Solver: ANSYS CFX 5.7.1
$>$ Mesh generator: ANSYS ICEN 5.1
$>$ Vehicles approximated as stationary solid blocks with no tyres
$>$ Car \& Bus height 1.7 m \& 3 m respectively
$>$ Car \& Bus length 4 m \& 12 m respectively
\Rightarrow Car \& Bus width $1.5 \mathrm{~m} \& 2.5 \mathrm{~m}$ respectively
-Tunnel walls set as moving with fluid inlet velocity (50 $\mathrm{km} \mathrm{hr}^{-1}$)
-No road tunnel roof longitudinal ventilation was assumed
Mgins features

A series of both steady and unsteady 3D RANS simulations were completed
>k-w Shear Stress Transport (SST) turbulence closure model with automatic wall functions was selected:

Dit can account foe the transport of the turbulent shear stress

Dit predicts well the onset and the amount of the flow separation under adverse pressure gradients
-Discretization scheme: $2^{\text {nd }}$ Order Upwind Difference
-Car exhaust approximated as an area source

- (leeward face of the solid block approximating the car)
- Two sets of simulations were performed both for the moving cars and buses

DIn each set two scenarios were assumed and investigated:
-During the first ("Referenece") only one emitting vehicle was assumed present inside the tunnel
-During the $2^{\text {nd }}$ ("Car"), an additional $2^{\text {nd }}$ moving vehicle was assumed to be present, in the wake region downstream of the leading one

- Separation at both sides of the vehicle -Main recirculation behind the vehicle with strong wake -Flow symmetrical with respect to the longitudinal axis of the vehicle
-Velocity at the nose of the $2^{\text {nd }}$ vehicle is severely affected by

-

 the wake of the $1^{\text {st }}$ leading car - Separation and recirculation zones as well as the wake region are larger in size (see- below)

Movifag Cisiss

Predicted pressure field

$$
\begin{aligned}
& (5 / 1-1) \\
& \text { Precticted Conscersiterion field (c*) }
\end{aligned}
$$

Effect seems to be confined mainly within the wake region where increased mixing due to turbulence generated by the $2^{\text {nd }}$ car is added to the existing one
-Presence of the $2^{\text {nd }}$ car drives pollution to the two sides
-Concentration in the wake of the $2^{\text {nd }}$ car lower compared to the $1^{\text {st }}$ scenario

$(5 / 11)$
Prealicted Concentication fitelal developanent

(Fi) = Movisg Cestres

Predicted Concentiction field developanent

$T=20 s$
-. Two Car -. - One Car

Movisig Cears

$T=15 \mathrm{~s}$
-. Two Car -. One Car

N

$$
-J^{\prime} \leq E\left(s^{2} / s^{2}\right)
$$

-Intense turbulent structures resulting in a strong wake downstream of the bus
-Flow is asymmetrical

- Strong interaction between the tunnel wall and the bus
-Although flow pattern around the
$2^{\text {nd }}$ bus is identical the effect of
- the tunnel wall is even stronger
- -The flow field is significantly
- affected by the wake of the $1^{\text {st }}$
- leading bus

-Wake region asymmetrical
- Flow and pollution is driven towards the tunnel wall
- Separated boundary layer at the side, affected by the low pressure region close to the wall
- -Flow field affected by the wall and the shifting in the
- direction of the flow in the
- wake region of the leading car
- •In both cases the separated
- boundary layer at the side of
- the wall is probably flapping
(hypothesis)

Movisug tuses
 Veritcel Sitecinsline glot

-Separation at the roof of the vehicle

- Main recirculation downstream
- Strong effect from the flow underneath
- Flow pattern identical for the $2^{\text {nd }}$ car
-Wall effect present for
both cases but stronger - in the $2^{\text {nd }}$
-Pollution accumulated
- to the wall side

Moving buses

Predicted Consentication field developanenis

$(9) / 12)$
Nonn-Dinsensionsul Concentraion (c*)

(i)

$$
-T^{\prime} \leq E\left(\left[s^{2}\right) s^{2}\right)
$$

$>$ Strong dependency of the dispersion mechanism on the complex aerodynamic effects due to the motion of vehicles
$>$ Depending on the position of the moving vehicle inside the tunnel, the concentrations of traffic emitted pollution at specific locations, which lie in the wake of those moving vehicles can be affected

DFor the moving car case, the increased mixing levels in the wake region of the $2^{\text {nd }}$ car results in considerably lower concentrations compared to the single car

FFor the moving bus case, interaction between the boundary layer separation at the wall side of the vehicle models and the tunnel wall lead to increased predicted TKE in the wall side wake region

This could be attributed to the aerodynamic forcing due to the continuous pressure disturbances propagating along the tunnel wall-side of the wake region of the $2^{\text {nd }}$ following bus
$>$ In cases with combined bi-directional motion with higher number of vehicles acting, the combined aerodynamic effect is expected to influence the dispersion even further
$>$ Future work will include :
The actual number of the moving vehicles
A more realistic shape of the moving vehicles
DLES modelling, which is necessary due to the unsteady nature of the aerodynamic effects

