Estimating Meteorological Inputs for Dispersion Modeling in Urban Areas

Akula Venkatram, Marko Princevac, Ashok Luhar^{*}, Wenjun Qian University of California, Riverside * CSIRO Australia

- Meteorological models to estimate urban parameters as air flows from rural area to urban area.
 - Comprehensive TAPM-CSIRO, MM-5
 - Simple IBL models
 - Measurements of mean winds and temperatures on urban towers to infer micrometeorological variables using M-O theory

TAPM-The Air Pollution Model

- TAPM used to simulate July 10-11, 2002 during the BUBBLE experiment with fine resolution of 0.5 km.
- The main urban measurements tower, Basel-Sperrstrasse, 32 m high, located inside a street canyon in area with homogeneous, residential building blocks, with mean height of 14.6 m AGL

The rural site, Village Neuf, located about 6.5 km NNW of the urban site, measured flow and turbulence at 3.3 m AGL over bare soil in an agricultural area (= 0.07 m).

BUBBLE Experiment

Results from TAPM

Internal boundary layer model

Evaluating Urban Micrometeorological Variables with IBL model

Measurements at BSPR from BUBBLE

Remarks on using Met Models

- Can provide estimates of u_{\star} , and σ_w
- Heat flux and boundary layer heights are unreliable
- Need tuning with moisture parameter and other surface parameters

Using Urban Measurements

 Make measurements of mean winds, temperature, temperature fluctuations, at one or two levels on a tower

 Use M-O similarity to estimate surface friction velocity, M-O length, and standard deviations of turbulent velocities

Wilmington Instrumentation

VTMX Instrumentation

Stable Conditions

One level of wind: Assume θ_* is constant (Venkatram, 1980)

$$u_{*} = C_{D}u(z_{r})\left\{\frac{1}{2} + \frac{1}{2}\left[1 - \left(\frac{2u_{0}}{C_{D}^{\frac{1}{2}}u}\right)^{2}\right]^{\frac{1}{2}}\right\}$$

$$\sigma_{w} = 1.6u_{*}$$

$$\theta_{*} = 0.5\sigma_{T}$$

$$\sigma_{v} = 1.9u_{*}$$

Two levels of temperature: Bulk Richardson number (Irwin and Binkowski, 1980)

Results-Stable Conditions Site: Wilmington, CA (Los Angeles Metropolitan Area)

Results-Stable Conditions

$$u_{*} = C_{D}u(z_{r})\left\{\frac{1}{2} + \frac{1}{2}\left[1 - \left(\frac{2u_{0}}{C_{D}^{\frac{1}{2}}u}\right)^{2}\right]^{\frac{1}{2}}\right\}$$
$$\sigma_{w} = 1.6u_{*}$$

$$\sigma_w = 1.6u_*$$

Wilmington: SU Observed vs. predicted σ_w on u_{\star} with θ_{\star} on σ_{θ} - Stable

Wilmington: SU Observed vs. predicted σ_{o} with θ_{\star} constant - Stable

Unstable Conditions

$$Q_{0} = \left(\frac{\sigma_{T}}{0.95}\right)^{3/2} \left(\frac{g\kappa z_{r}}{T_{0}}\right)^{1/2}$$

$$\sigma_{w} = \left(\sigma_{ws}^{3} + \sigma_{wc}^{3}\right)^{1/3}$$

$$\sigma_{wc} = 1.3 \left(\frac{g}{T_{0}}Q_{0}z_{r}\right)^{1/3} \text{ for } z_{r} \le 0.1 z_{i}$$

$$= 0.6 w_{*} \text{ for } z_{r} \ge 0.1 z_{i}$$
where the convective velocity scale w_{*} is
$$w_{*} = \left(\frac{g}{T_{0}}Q_{0}z_{i}\right)^{1/3}$$

Wilmington-Shoreline Meteorology

Results-Unstable Conditions

Results-Unstable Conditions

Results-Unstable Conditions

Conclusions

- Comprehensive and IBL models provide reasonable estimates of urban parameters. However, calculation of heat flux is uncertain.
 - Moisture parameter dominates heat flux calculation

One or two level measurements of winds and σ_T can be used to estimate urban parameters. More testing is required.

Two levels can increase errors

Acknowledgements

Sponsors:

California Air Resources Board, California Energy Commission, National Science Foundation

Students: Jing Yuan, Tao Zhan

Postdocs: Sang-Mi Lee

Colleagues: David Pankratz, Vlad Isakov