The Effects of Parametric Uncertainties in Simulations of a Reactive Plume using Lagrangian Stochastic Models

> Tilo Ziehn Nick S. Dixon Alison S. Tomlin

School of Process, Environmental and Materials Engineering Energy and Resources Research Institute University of Leeds

HARMO 12, 6 October 2008

HARMO 12

1/19

Introduction

- 2 Model Validation and Uncertainty Analysis
- 3 Extended Chemical Mechanism
- 4 Global Sensitivity Analysis
- 5 Results
- 6 Conclusions

A (1) > A (2) > A

Introduction

2 Model Validation and Uncertainty Analysis

3 Extended Chemical Mechanism

- 4 Global Sensitivity Analysis
- 5 Results
- 6 Conclusions

▲ 同 ▶ → 三 ▶

Introduction

- 2 Model Validation and Uncertainty Analysis
- 3 Extended Chemical Mechanism
- 4 Global Sensitivity Analysis
- 5 Results
- 6 Conclusions

< A > < - > >

Introduction

- 2 Model Validation and Uncertainty Analysis
- 3 Extended Chemical Mechanism
- 4 Global Sensitivity Analysis
- 5 Results
- 6 Conclusions

- 3 >

Introduction

- 2 Model Validation and Uncertainty Analysis
- 3 Extended Chemical Mechanism
- 4 Global Sensitivity Analysis
- 5 Results
- 6 Conclusions

Introduction

- 2 Model Validation and Uncertainty Analysis
- 3 Extended Chemical Mechanism
- 4 Global Sensitivity Analysis
- 5 Results
- 6 Conclusions

Modelling of Atmospheric Plumes

Lagrangian Stochastic (LS)-Models

- LS-models are widely used to model concentrations and concentration fluctuations in atmospheric plumes
- Here: combined LS-model with a micro-mixing sub-model (Dixon & Tomlin 2007) using the interaction by exchange with the mean (IEM) mechanism
- Can also be applied for predicting concentration fluctuations in urban areas
- Based on the marked particle model which uses the formulation of Thomson (1987) for inhomogeneous turbulent flows

< 🗇 🕨 < 🖻 🕨

Model Validation

Wind Tunnel Experiment

- Wind tunnel experiment by Brown & Bilger (1996) is used to provide the first case study
- Nominal mean axial velocity of the flow: $\bar{U} = 0.5 \,\mathrm{m\,s^{-1}}$
- Background ${\rm O}_3$ concentration: $2.45\cdot 10^{13}\,{\rm mol}\,{\rm cm}^{-3}$
- Source NO concentration: $1.26 \cdot 10^{16} \,\mathrm{mol} \,\mathrm{cm}^{-3}$
- Reaction: $NO + O_3 \longrightarrow NO_2 + O_2$
- No photolysis reactions included due to the absence of ultraviolet light

Uncertainty Analysis (1)

Structure Function Coefficient c_0

- *c*₀ determines diffusion in the velocity space and plays an important role in Lagrangian modelling
- Wide range of values can be found in the literature, e.g.
 - Rizza et al. (2006): $c_0 = 4.3 \pm 0.3$
 - Du (1997): $c_0 = 3.0 \pm 0.5$
 - Lien and D'Asaro (2002): $c_0 = 5.5$ and $c_0 = 6.4$
 - Reynolds (1998): $c_0 = 5.0 \pm 0.5$
- Low value of $c_0 = 3$ is questioned by Reynolds (1998)
- Therfore, it is of interest to explore the impact of the uncertainties in *c*₀
- Based on the studies we use $c_0 = [3...6]$ (nominal value $c_0 = 5$)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Uncertainty Analysis (2)

Mixing Time Scale Coefficient α and Source Size σ

- Simple scheme is used in the LS-model to relate mixing time scale t_m to turbulence timescale: $t_m = \alpha \frac{k}{\epsilon}$
- Review of the range of values for α is given in Cassini et al. (2005)
- Based on this we use $\alpha = [0.6...3]$ (nominal value $\alpha = 0.75$)
- Shortcoming of the IEM model: mean concentration field is influenced by the micro-mixing (further explored using sensitivity analysis)
- Gaussian distribution is assumed for the release from the source
- Range for σ is estimated to represent the uncertainty in the effect of near field mixing on the initial source width
- Here we use $\sigma = [0.008 \dots 0.016]$ m (nominal value $\sigma = 0.008$ m)

• • • • • • • • • • • •

Radial Profile Conserved Scalar NO_x

- Using the nominal values LS-model gives a good representation of the radial profile, however simulated profile is slightly narrower
- 400 simulations to produce error bars using random values within the uncertainty ranges for the 3 parameters (*c*₀, *α*, *σ*)

 Range of predictions is large → high degree of sensitivity to the input parameters (further explored using sensitivity analysis)

Radial Profile Conserved Scalar NO_x

- Using the nominal values LS-model gives a good representation of the radial profile, however simulated profile is slightly narrower
- 400 simulations to produce error bars using random values within the uncertainty ranges for the 3 parameters (c₀, α, σ)

 Range of predictions is large → high degree of sensitivity to the input parameters (further explored using sensitivity analysis)

Chemical Mechanism

Reaction Scheme

- Eight reactions between the species NO, O, O₃ and NO₂
- Photolysis included for O₃ and NO₂

R1:
$$O \xrightarrow{k_1} O_3$$
R5: $O + NO_2 \xrightarrow{k_5} NO$ R2: $O \xrightarrow{k_2} O_3$ R6: $NO + O_3 \xrightarrow{k_6} NO_2$ R3: $O + O_3 \xrightarrow{k_3} 2O_2$ R7: $O_3 \xrightarrow{k_7} O$ R4: $O + NO \xrightarrow{k_4} NO_2$ R8: $NO_2 \xrightarrow{k_8} NO + O$

 Rate equations are implemented in the Lagrangian stochastic model

- ∢ ∃ ▶

Setup

Uncertain Parameters

- Study of the combined effects of uncertainties in physical and chemical parameters
- 22 parameters assumed to be uncertain
- Physical parameters: σ, α and c₀ using the uncertainty ranges introduced earlier
- Chemical reaction rate parameters for each reaction: A-factor, activation energy *E* and temperature coefficient for Arrhenius parameters or photolysis rate
- Temperature: [273...293] K
- NO fraction in the source: 100 % to 80 %
- Ozone concentration: $[7.35 \cdot 10^{11} \dots 1.225 \cdot 10^{12}] \, mol \, cm^{-3}$

A (10) F (10)

High Dimensional Model Representation (HDMR)

Random Sampling (RS)-HDMR

- HDMR was developed to express the input-output relationship of a complex model with a large number of parameters
- Allows the investigation of the effects caused by individual parameters ($f_i(x_i)$) and parameter interactions (e.g. $f_{ij}(x_i, x_j)$) upon the model output
- Requires only one set of random or quasi-random samples

Sensitivity Indices

- Sensitivity Indices measure the effect of one or more input parameters on the output
- S_i measures the effect of x_i (fractional contribution)
- S_{ij} measures the interactive effect of x_i and x_j

A (10) A (10)

Conserved Scalar NO_x (1)

RS-HDMR using N = 2048 quasi-random samples

• Output of interest: Concentration of the conserved scalar NO_x at the plume centre

Parameter	S_i	S_i	S_i
	$(x = 2.2 \mathrm{m})$	$(x = 4.8 \mathrm{m})$	$(x = 5.8 \mathrm{m})$
Structure function coefficient c_0	0.7997	0.8039	0.8023
Mixing time scale coefficient α	0.1868	0.1864	0.1876
$\sum S_i$	0.9866	0.9903	0.9900

 Mixing time scale coefficient has significant effect on [NO_x] → IEM model breaks one of the desireable properties of a mixing model: the mean concentration should be uneffected by the mixing model

A (1) > A (2) > A

Conserved Scalar NO_x (plume centre, x=2.2m)

Results

- Strong positive linear relationship
- Most important parameter, causes around 80 % of the overall variance
- Experimental value can not be recovered with a value of c₀ < 4, even taking into account the uncertainties in the other parameters (in agreement with Reynolds (1998))

Conserved Scalar NO_x (plume centre, x=2.2m)

Results

- Negative non-linear relationship
- Causes nearly 18% of the overall variance
- High sensitivity for values of α < 1.5

Ozone concentration (1)

RS-HDMR using N = 2048 quasi-random samples

• Output of interest: Ozone concentration [O3] at the plume centre

Parameter	S_i	S_i	Si
	$(x = 2.2 \mathrm{m})$	$(x = 4.8 \mathrm{m})$	$(x = 5.8 \mathrm{m})$
E/R for NO + O ₃ \longrightarrow NO ₂	0.4086 (1)	0.4302 (1)	0.4330 (1)
Mixing time scale coefficient α	0.3030 (2)	0.2693 (2)	0.2594 (2)
Background concentration for O ₃	0.1057 (3)	0.0749 (4)	0.0708 (4)
Fraction of NO in total $[NO_x]$	0.0591 (4)	0.0776 (3)	0.0834 (3)
Temperature	0.0335 (5)	0.0359 (6)	0.0362 (6)
Structure function coefficient c ₀	0.0296 (6)	0.0363 (5)	0.0373 (5)
A factor for $NO + O_3 \longrightarrow NO_2$	0.0276 (7)	0.0292 (7)	0.0295 (7)
$\sum S_i$	0.9745	0.9643	0.9620

< 🗇 🕨 < 🖃 >

Ozone concentration (plume centre, x=2.2m)

Results

- Positive, nearly linear relationship
- Most important parameter, causes more than 40% of the overall variance
- Importance of the parameter increases with growing distance from the point source

Ozone concentration (plume centre, x=2.2m)

Results

- Positive, non-linear relationship
- Second most important parameter, causes around 30% of the overall variance
- Importance of the parameter decreases with growing distance from the point source

Conclusions

Conclusions and Future Work

Conclusions

- Variance in the mean concentration of the conserved scalar NO_x at the plume centre is as expected only influenced by the turbulence parameters (structure function coefficient *c*₀ dominates and causes 80 % of the variance)
- Variance in the mean Ozone concentration is influenced by both physical and chemical parameters
- Relative importance of α increases when the chosen target output is a secondary species rather than a conserved scalar

Future Work

- Investigation of the reactive plume over a larger range
- Application of the reactive plume model to an urban area

Software

GUI-HDMR - a Tool for Global Sensitivity Analysis

- GUI-HDMR was developed to combine existing RS-HDMR tools and RS-HDMR extensions and make them easily available for a wide range of users
- Software is written in Matlab and requires the basic Matlab package

