On Using Model Performance Statistics in Applying Models

by Akula Venkatram, Vlad Isakov^{*}and Wenjun Qian University of California, Riverside * USEPA

Goal: Convince you that model performance statistics should be used in the application of the model

- The model evaluation framework
- Application –near road concentrations of VOC
- Displaying model performance
- Conclusions

The Framework

$$C_o(\alpha,\beta) = C_p(\alpha) + \varepsilon(\alpha,\beta)$$

 α = Model inputs

 β = Variables not included in model

Need ε to simulate observations

Error is a component of the observation

$$\ln(C_o) = \ln(C_p) + \varepsilon$$
$$m_g = \exp(\overline{\varepsilon})$$
$$s_g = \exp(\langle \varepsilon^2 \rangle^{1/2} - \overline{\varepsilon}^2)$$

The statistics m_g and s_g represent information that should be used explicitly in the application of the model.

Simulating Observations

 $C_{p}m_{g}$

Model estimates and error statistics are used to simulate observations

Model applied to estimate the contribution of traffic-generated emissions of VOCs – benzene, 1,3-butadiene, toluene – to concentrations at downwind receptors ranging from 10-m to 100-m from the edge of a major highway in Raleigh, North Carolina. during a field study conducted in August, 2006,

Model evaluated with NO concentrations measured at 7.6m and 17.6m from edge of road

Estimate contribution of highway to VOC concentrations

 $C_o - b = aC_o^s = am_g C_p s_g^p$ $b = Background \ concentration$ $a = Emission \ factor \ correction$

The value of **p** represents lack of knowledge of variables that determines observed value.

We can only insist that mean and standard deviation of simulated observations are equal to those of actual observations

Details

Compute C_p

Compute
$$C_{o}^{s}(i) = m_{g}C_{p}s_{g}^{p(i)}$$
; $p(i) = N(0, 1)$

$$\begin{split} & \textit{mean}\left(aC_{o}^{s}\right) = \textit{mean}\left(C_{o} - b\right) \textit{ and } \textit{std}\left(aC_{o}^{s}\right) = \textit{std}\left(C_{o}\right) \\ & \textit{leads to} \\ & a = \frac{\textit{std}\left(C_{o}\right)}{\textit{std}\left(C_{o}^{s}\right)} \textit{ and } b = \textit{mean}\left(C_{o}\right) - \textit{asmean}\left(C_{o}^{s}\right) \end{split}$$

 $\overline{a} = mean(a) = emission \ correction \ factor$ $\overline{b} = mean(b) = background \ concentration$

$$Contribution = \frac{\overline{a}m_g C_p}{\overline{a}m_g C_p + \overline{b}}$$

Benzene

Benzene

Contribution

1-3 Butadiene

Summary

Model application is simulating observations

- Simulated observations can be used to estimate background concentrations and emission correction factors and their uncertainties
- Background concentrations and emission factors are consistent with independent measurements

Performance Taylor diagram

Error correlation with model estimate is undesirable

Modified Diagram

Comparing Model Performance

Summary

- "Error" statistics are an integral part of the model estimate
- The goal of model application is to simulate observations using the model estimate and error statistics
- Framework relating observation to model estimate can be translated to a vector diagram that displays properties of model performance