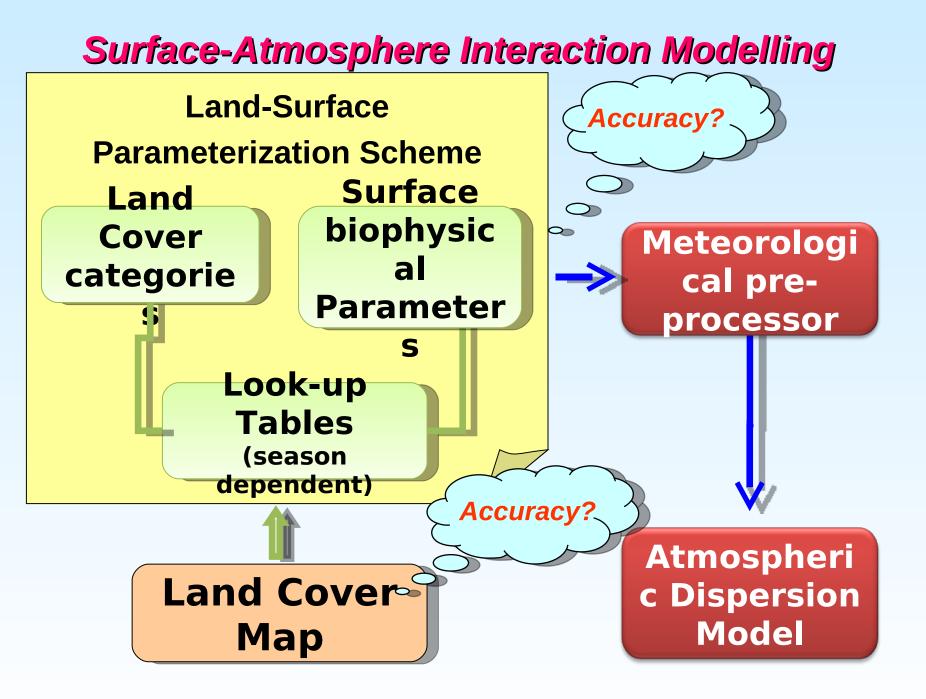
Surface parameters evaluated from satellite remote sensing images for pollutant atmospheric dispersion modelling


Teggi S<u>.</u>*, <u>Bogliolo M.P.</u> * *, Ghermandi G. *, Fabbi S. *, Funaro M. * *, Gariazzo C. * *

* University of Modena and Reggio Emilia, Modena, Italy

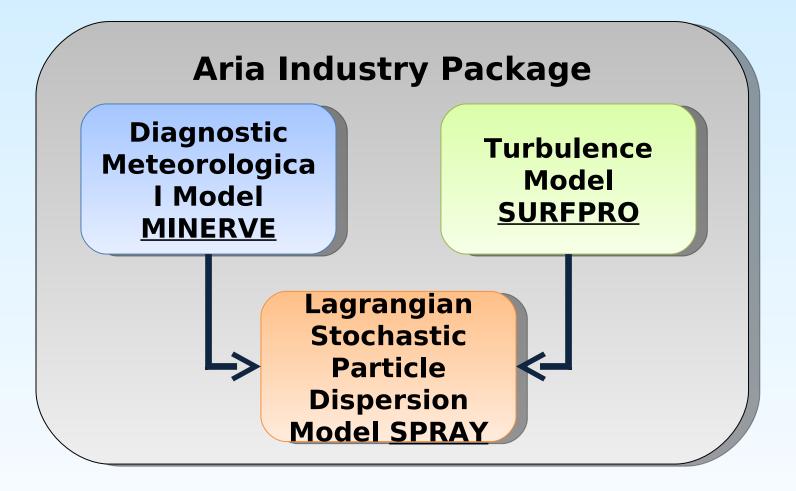
* * ISPESL – DIPIA, Monteporzio Catone, Rome, Italy

Work Rationale

Satellite remote sensing can contribute to increase accuracy by:

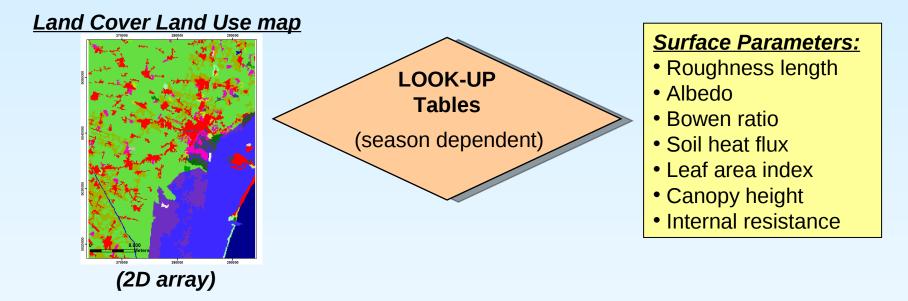
- updating the land cover maps,
- directly estimating some surface biophysical parameters.

But WE NEED
operational methodologies of data processing;
suitable interfaces to feed atmospheric models


Work Summary

We simulated the dispersion of the pollutants emitted from

industrial sources using ASTER satellite images to feed the model with:


- <u>updated CORINE Land Cover map</u>
 - <u>calculated surface albedo map</u>

Atmospheric Dispersion Model

Tinarelli G. et al., 1998; Geai P., 1987; ARIANet R2006.23, 2006

Land-Surface Parameterization in the SURFPRO model

The ARIA Industry Package includes **2** parameterization schemes:

Aggregate CORINE Scheme and **BATS Scheme**

CORINE Legend - Level 3	New Aggregated CORINE Scheme			
Continuous urban fabric	Continuous urban fabric			
Discontinuous urban fabric	Discontinuous urban fabric			
Industrial or commercial units	Industrial			
Port areas				
Road and rail networks and associated land				
Airports	Open, mostly artificial surfaces			
Construction sites	-			
Dump sites		-		
Non-irrigated arable land	Cultivated land			
Permanently irrigated land				
Rice fields	Rice fields	-		
Vineyards	Provense the second			
Fruit trees and berry plantations	Permanent/woody crops			
Olive growes	_			
Pastures	Pastures	l.		
Annual crops associated with permanent crops		-		
Land principally occupied by agricult., with signific, areas of natural	Crops/wood mosaic			
Green urban areas				
Sport and leisure facilities		L		
Complex cultivation patterns	Scattered settlement (farms, villages, trees, hedge	: [
Broad-leaved forest	Broad-leaved forest			
Coniferous forest	Coniferous forest	l		
Mixed forest	Mized forest			
Agro-forestry areas	I-IIZEU TOTES((
Moors and heathland				
Sclerophyllous vegetation	Deciduous or evergreen Bush/Shrub vegetation	(
Transitional woodland-shrub	1			
Beaches, dunes, and sand plains	Beaches, dunes, and sand plains	(
Bare rock				
Mineral extraction sites	Bare rock			
Sparsely vegetated areas				
Burnt areas	Sparsely vegetated areas			
Natural grassland				
Glaciers and perpetual snow	Glaciers and perpetual snow			
Inland marshes				
Peatbogs				
Salt marshes	inland and coastal wetlands			
Salines				
Intertidal flats				
Water courses				
Water bodies				
Coastal lagoons	Vater bodies			
Estuaries				
Sea and ocean		l I		

<u>gBregatec660RINEsbberne</u>

Classes added for remote sensing Oultivated land: Fallow ground/Stubbles (FA) Oultivated land: Fallow ground/Stubbles (FA) Oultivated land: Fallow ground/Stubbles (SP) Oultivated land: High senescent crops (SU) Oultivated land - generic

21 land use categories obtained grouping the 44 classes of the CORFINE Level 3 legend (SU)

Parameters were assigned using values of the original class, for the season when the considered phenological Slightly modified by the authors condition is predominant

used to run the model using the Beigiotal SEOSTIGEupdate.d maps

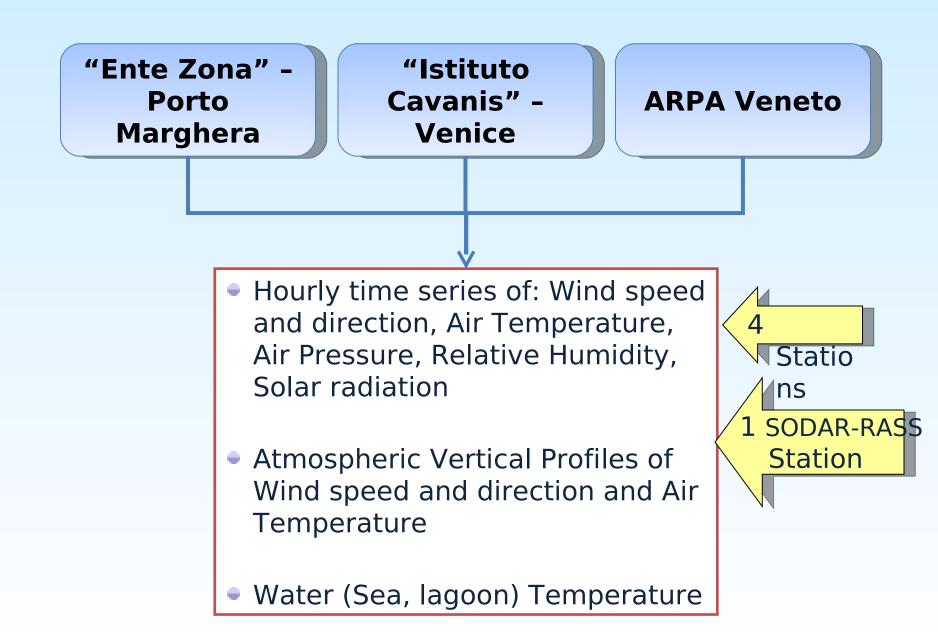
Simulation Domain and Model Setup

270000

- 30 km x 40 km domain
- Part of the Venice lagoon (N Italy)
- Porto Marghera industrial site
- Almost flat coastal area
- Sea-breeze development
- Complex land use pattern
 (urban and industrial areas, cultivated land, sea, lagoon, marsh areas)
 Emission-sources

Time step:1 hour100 mDiameter:4 mSpatial domain of the 3D grid:0 CHerriperature of gases:140 °CHerriperature of gases:</t

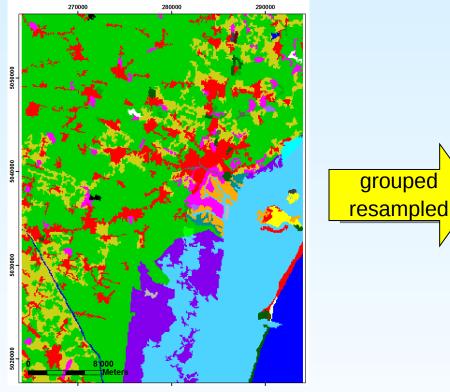
variable step starting from 10 m

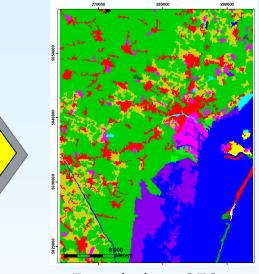

264000 m East, 5017140 m North UTM33-WGS84

290000

<u>Data set</u>

Meteorological Dataset

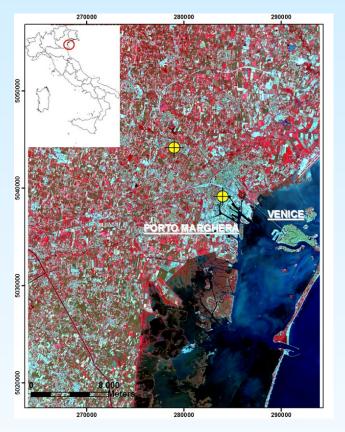



Land Cover map

grouped

CLC2000 CORINE map – Level 3

Aggregated CORINE map


Resolution: 250 m

Resolution: 100 m

ASTER Satellite Image

Image acquired on 5 September 2007

Pre processed to obtain geroreferenced images of spectral surface reflectance, corrected for atmospheric effects.

ASTER Sensor

Band Number	Electromagnetic Range (µm)			Spatial Resolution (m)				
1	VNIR	0.52	-0.60	15				
2		0.63	-0.69					
3N/3B		0.78	-0.86					
4	SWIR	1.60	-1.70	30				
5		2.145	-2.185					
6		2.185	-2.225					
7		2.235	-2.285					
8		2.295	-2.365					
9		2.360	-2.430					
10	TIR	8.125	-8.475	90				
11		8.475	-8.825					
12		8.925	-9.275					
13		10.25	-10.95					
14		10.95	-11.65					
ASTER Bands								
1 2 3 4 5 6 7 8 9 10 11 12 13 14								
VNIR	SWI	R		TIR				

Calculation of Surface Albedo from ASTER data

computed for each pixel of the ASTER image using the relation of Liang (2000):

$$\alpha = 0.484 \rho_1 + 0.335 \rho_3 - 0.324 \rho_5 + 0.551 \rho_6 + 0.305 \rho_8 - 0.36 \rho_9 - 0.0015$$

 ρ_i = surface reflectance in the ASTER band *i*

Processing steps:

- Albedo was computed with a ground resolution of 30 m;
- The average value for each land cover class was calculated;
- The obtained values were used in place of the values contained in the parameterization scheme.

Surface Albedo from ASTER data

Information retrieval 2

Updating the CORINE dat set

with ASTER retrieved land cover map

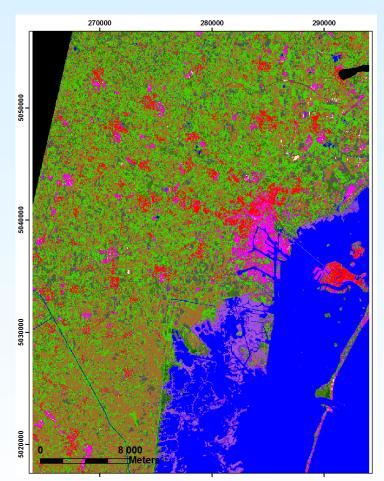
We developed a set of rules and procedures, with the goal of increasing the repeatability

of the process, reducing errors and subjectivity.

• Standard legend of cover types to be retrieved from the image. CRITERIA: classes easily separable with remote sensing and having significant differences in the bio-physical properties affecting surface-atmosphere interactions.

Legend for classification of Remote Sensing images
Urban
Industrial
Concrete
Fallow ground/Stubbles
Green vegetation (crops or grass) sparse/mix with dry vegetation
Green vegetation (crops or grass) quite homogeneous
Green vegetation (crops or grass) dense/homogeneous (mature)
Senescent dry vegetation dense/homogeneous (mature cereals)
Coniferous homogeneous canopy
Broadleaved homogeneous canopy
Mix coniferous-broadleaved homogeneous canopy
Broadleaved unhomogeneous wood
Woody crops
Coniferous unhomogeneous wood
Bare rock (fresh cut) (quarries)
Sand (beaches)
Exposed bare rock/dry bare ground with low humus content
Evergreen high and low bush/shrubs (Maquis)
Burnt areas
Lagoon - Emersed marsh vegetation
Lagoon - Wet bare ground
Lagoon - Wet vegetated ground
Water
Snow/Ice

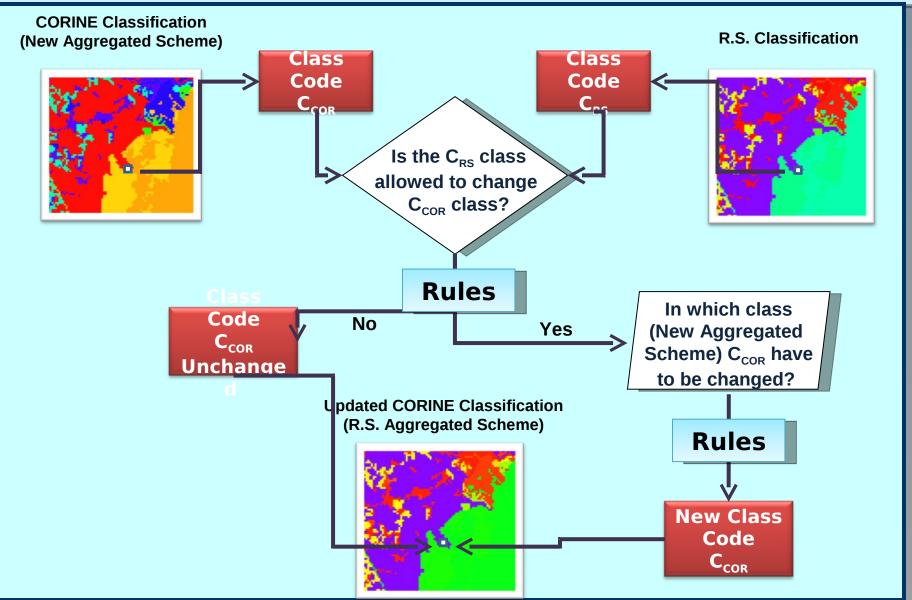
Information retrieval 2


<u>Updating of the CORINE land cover map</u>

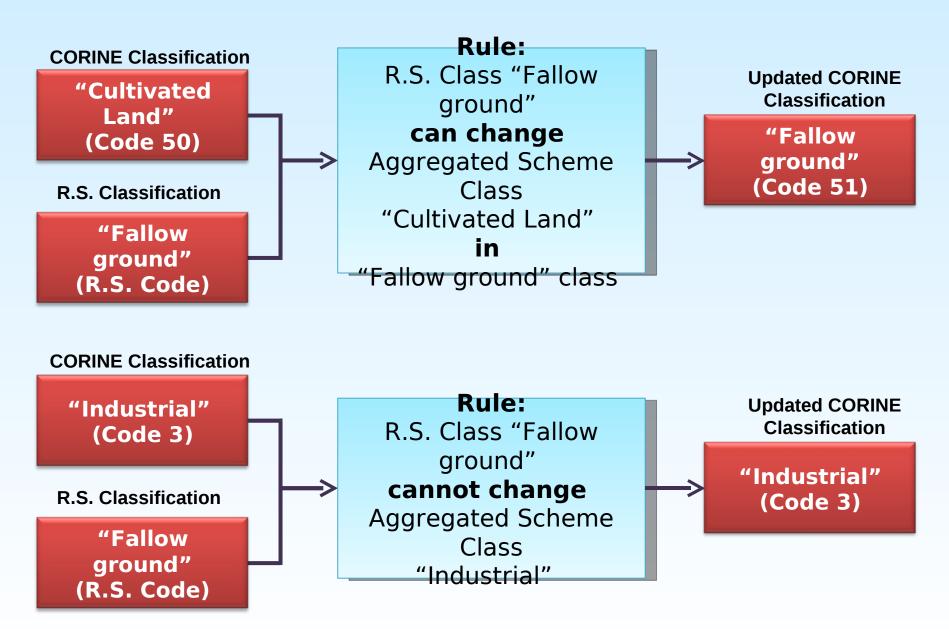
with ASTER information

We developed a **set of rules and procedures**, with the goal of increase the repeatability

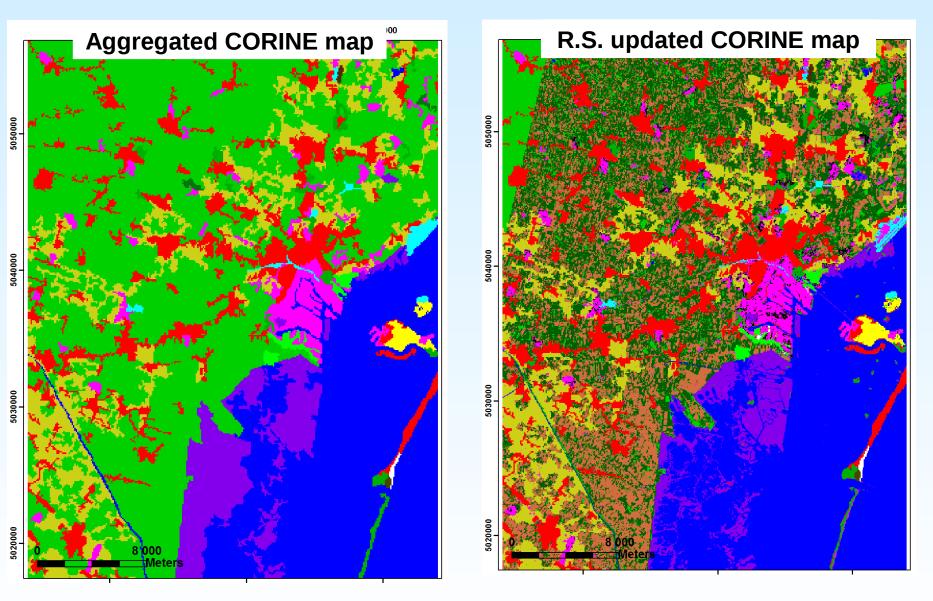
of the process, reducing errors and subjectivity.


<u>Standard procedure of image</u>
 <u>classification</u>. CRITERIA: use of
 binary decisions wherever possible,
 to assign pixels to classes.

• Set of RULES that control the way the remote sensing classification modifies the

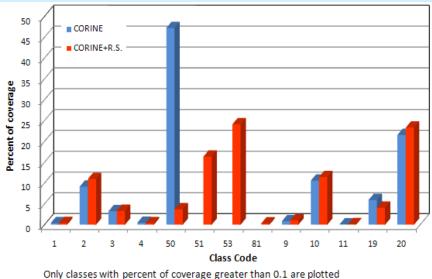

Aggregated CORINE Land Cover. CRITERIA: maximizing the input of significant information;

minimizing the influence of possible R.S. classification errors.


Way the remote sensing classification modifies the Aggregated CORINE Land Cover.

Examples of **RULES**

Results


Land Cover changes induced by Remote Sensing

Results

Land Cover changes induced by Remote Sensing

CODE	New Aggregated CORINE Scheme - R.S.	Percent of	f Coverage
		CORINE	CORINE + R.S.
1	Continuous urban fabric	0.4	0.4
2	Discontinuous urban fabric	9.1	11.0
3	Industrial	3.2	3.3
4	Open, mostly artificial surfaces	0.5	0.4
50	Cultivated land - generic	47.2	3.7
51	Cultivated land: Fallow ground/Stubbles	-	16.3
52	Cultivated land: Very young crops	-	0.0
53	Cultivated land: Low mature green crops	-	24.1
54	Cultivated land: High senescent crops	-	0.0
6	Rice fields	0.0	0.0
7	Permanent/woody crops	0.0	0.0
80	Pastures - generic	0.0	0.0
81	Pastures: Low-sparse grass	-	0.3
82	Pastures: Thick/homogeneous grass	-	0.0
9	Crops/wood mosaic	0.8	1.0
10	Scattered settlement (farms, villages, trees,)	10.6	11.4
11	Broadleaved forest	0.1	0.1
12	Coniferous forest	0.0	0.0
13	Mixed forest	0.0	0.0
14	Deciduous or evergreen Bush/Shrub vegetation	0.4	0.4
15	Beaches, dunes and sand plains	0.0	0.0
16	Bare rock	0.0	0.0
17	Sparsely vegetated areas	0.0	0.0
18	Glaciers and perpetual snow	0.0	0.0
19	Inland and coastal wetlands	5.9	4.1
20	Water bodies	21.5	23.3

Percents of Coverage have been extracted from the land cover maps given as input to the dispersion model (250 m x 250 m grid)

<u>Results</u>

Effects of ASTER information on Dispersion results

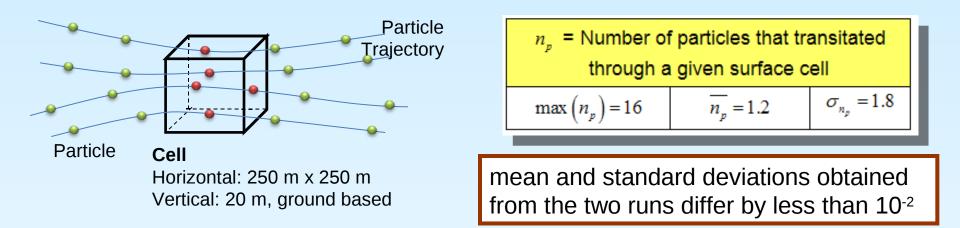
Variable	Run	Land, I	Day	Land, I	Land, Night Water, Day		Water, Night		
(units)		Mean, σ	RMSD	Mean, σ	RMSD	Mean, σ	RMSD	Mean, σ	RMSD
z_{θ} (cm)	R0	32.8, 30.8	17.3	32.8, 30.8	17.3	0.5, 2.3	6.5	0.5, 2.3	6.5
	R1	31.5, 34.4	17.5	31.5, 34.4	17.5	0.6, 6.0	0.5	0.6, 6.0	0.5
<i>u</i> [*] (m s ⁻¹)	R0	0.50, 0.21	0.10	0.25, 0.16	0.07	0.43, 0.27	0.19	0.24, 0.14	0.13
	R1	0.49, 0.21	0.10	0.25, 0.17	0.07	0.49, 0.25	0.19	0.29, 0.18	0.15
w* (m s ⁻¹)	R0	1.07, 0.63	0.12	0.03, 0.11	0.01	0.86, 0.39	0.34	0.72, 0.38	0.42
	R1	1.11, 0.65	0.12	0.03, 0.11	0.01	0.99, 0.36	0.54	0.89, 0.39	0.42
<i>L</i> (m)	R0	-206, 357	125	45, 173	73	-278, 342	267	-30, 111	132
	R1	-190, 343	125	46, 177	75	-304, 321	207	-48, 138	152
<i>h</i> (m)	R0	1163, 681	111	162, 130	50	676, 398	256	346,208	190
	R1	1202, 713	111	163, 136	50	772, 370	230	435, 244	180

 $RMSD = \sqrt{mean} \notin f_{R_1} - f_{R_0} \bigvee^2 f: model output$

R0 = reference run R1 = run using remote sensing

- z₀: roughness length
- u* : friction velocity
- w*: convective scale velocity
- *L*: Monin-Obukhov length
- *h*: mixing height

R.S. changed the spatial distribution of the outputs.


Their statistic distribution is little affected.

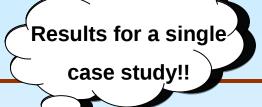
Changes are more important over water than over land,

and during day than during night.

<u>Results</u>

Effects of ASTER information on Particle distribution

Number of surface cells (*n*) crossed by a n. of particles greater than a given threshold n_r


Run	$n_t = 5$	$n_t = 6$	$n_t = 7$	$n_t = 8$	$n_t = 9$	$n_t = 10$
R0	<i>n</i> = 1202	<i>n</i> = 710	<i>n</i> = 402	<i>n</i> = 213	n = 123	n = 74
R1	<i>n</i> = 1166	n = 659	n = 349	n = 185	n = 97	n = 55
$100 \cdot (n_{R1} - n_{R0})/n_{R0}$	-3%	-6%	-13%	-13%	-21%	-26%

R0 = reference run R1 = run using remote sensing

The reference run produces more cells with high number of particles than run R1

the Run using R.S. produces more dispersion

<u>Conclusions</u>

Updating the land use map with ASTER classification

- Very small differences on the mean values of the outputs of the model;
- Significant changes in their distribution over the domain.
- Causes of these differences should be further investigated.

Using ASTER albedo in the model

- Satellite albedo values are **very close** to the values contained in the model **internal**
- **tables**; ———— Remote sensing images can be used as an alternative way to obtain reliable values of this parameter.

Further work

- Application to different case studies, to confirm the present first results;
- Attempt to extract other surface parameters needed by the models.