MODELLING THE CONTRIBUTION OF SO₂ AND NO_X EMISSIONS FROM INTERNATIONAL SHIPPING TO SULPHUR AND OXIDISED NITROGEN DEPOSITION IN THE UNITED KINGDOM

Tony Dore¹, Maciej Kryza², Massimo Vieno³ & Mark Sutton¹

¹Centre for Ecology and Hydrology, UK ³Wrocław University, Poland ²Edinburgh University, UK

HARMO12, Cavtat, Croatia 6-9 October 2008

Centre for Ecology & Hydrology

IATURAL ENVIRONMENT RESEARCH COUNCIL

Contents of Talk

- FRAME model description
- UK Nitrogen and sulphur deposition maps for 2005
- Comparison with measurements
- Source attribution (UK, Europe, shipping)
- Contribution of shipping emissions to sulphur and nitrogen deposition in the UK

OVERVIEW OF THE FRAME MODEL

- 5 x 5 km² resolution over the British Isles.
- Input gas and aerosol concentrations at the edge of the model domain calculated with FRAME-Europe, using European emissions and run on the EMEP 50 km scale grid.
- Air column divided into 33 layers moving along straight-line trajectories in a Lagrangian framework with a 1° angular resolution. Variable layer thickness from 1 m at the surface to 100 m at 2500 m.
- Emissions gridded separately by SNAP sector for SO₂ and NO_x and by agricultural sector for NH₃ and injected into vertical model layers which depend on the sector.
- Vertical diffusion in the air column is calculated using K-theory eddy diffusivity and solved with the Finite Volume Method.
- Wet deposition is calculated using a diurnally varying scavenging coefficient and a 'constant drizzle' approximation driven by an annual rainfall map.
- Five land classes: forest, moorland, grassland, arable, urban & water. Vegetation specific canopy resistance parameterisation is employed to calculate dry deposition of SO₂, NO_x and NH₃.
- Chemistry includes gas phase and aqueous phase reactions of oxidised sulphur and oxidised nitrogen and conversion of NH₃ to ammonium sulphate and ammonium nitrate aerosol.

Meteorological Inputs

A.J. Dore, M. Vieno, N. Fournier, K.J. Weston & M.A. Sutton (2006) Development of a New Wind Rose for the British Isles Using Radiosonde Data and application to An Atmospheric Transport Model *Q.J.Roy.Met.Soc.* **132**, 2769-2784

2005 Deposition of N and S (kg N/S ha⁻¹)

Comparison with measurements

	m	С	\mathbf{R}^2
SO_2 gas concentration	1.18	+0.03	0.95
NO_2 gas concentration	1.15	-0.37	0.94
$\rm NH_3$ gas concentration	0.90	+0.87	0.49
SO ₄ aerosol concentration	1.36	-0.09	0.92
NO_3^- aerosol concentration	1.27	-0.14	0.96
NH_4^+ aerosol concentration	0.98	-0.04	0.97
HNO ₃ concentration	0.54	+0.24	0.67
SO_4^- wet deposition	1.07	+0.08	0.68
NO ₃ wet deposition	0.89	+0.11	0.68
NH_4^+ wet deposition	0.90	+0.17	0.70

Comparison of model (y) with measurements (x) of annual average concentrations (µg m⁻³) and wet deposition (kg N/S Ha⁻¹) from the national monitoring networks.

 $\mathbf{y}_{(\text{modelled})} = \mathbf{m} * \mathbf{x}_{(\text{measured})} + \mathbf{c}$

R² is the correlation coefficient

Nitric Acid Network Sites Jan 2006

UK Nitric acid **DELTA** sampler monitoring network

(DEnuder for Long Term Atmospheric sampling) Measurements include HNO₃, NH₃ & SO₂ gas and NO_{3}^{-} , NH_{4}^{+} & SO_{4}^{-} aerosol chemistry

UK National Ammonia Monitoring

- > 94 sites with monthly measurements
- > 57 sites with DELTA samplers
- > 49 sites with ALPHA samplers

HNO3 Sites (From Sep 1999)

HNO3 Sites New (From Jan 2006)

Correlation of model with measurements

FRAME-Europe 2005 SO₂ shipping emissions (Kg S Ha⁻¹)

Emissions of SO₂ & NO_x from international shipping

- Large uncertainties in the magnitude and location of SO₂ and NO_x emissions from international shipping (global estimates range from $3.2^{(1)}$ to $4.7^{(2)}$ Tg SO₂ year⁻¹)
- Global emissions are INCREASING at a rate of 1.5 2.5% year^{-1.}
- UN International Maritime Organisation agreement to restrict emissions of SO₂ from international shipping. This includes a sulphur cap of 0.5% for bunker fuel from 2020.
- Shipping emissions are difficult to control due to their international mobility.
- Emissions are currently available on the EMEP 50 km grid. High emissions in port areas overlap land squares in a 5 km resolution model. Regridding from 'land' to 'sea' results in further uncertainties.

⁽¹⁾ Endresen, Ø., E. Sørgård, J. K. Sundet, S. B. Dalsøren, I. S. A. Isaksen, T. F. Berglen, and G. Gravir (2003), Emission from international sea transportation and environmental impact, J. Geophys. Res., 108(D17), 4560, doi:10.1029/2002JD002898.

⁽²⁾ Corbett, J. J., and H. W. Köhler (2003), Updated emissions from ocean shipping, J. Geophys. Res., 108(D20), 4650, doi: 10.1029/2003JD003751.

2005 NO_3^- aerosol concentration (µg m⁻³)

FRAME-Europe

EMEP

EMEP data provided by Hilde Fagerli, Met.No.

Source-attribution for deposition in the UK for the year 2005

EMEP data from 2005 UK country report

Influence of international shipping emissions on sulphur deposition

Sulphur and Nitrogen Deposition Budgets to the United Kingdom

for 2005, 2020 Business As Usual scenario and 2020 with IMO agreement on shipping emissions

	2005		2020 BAU		2020 IMO	
	SO _x	NOy	SO _x	NOy	SO _x	NO _y
Dry deposition (Gg S/N)	60	71	38	44	26	44
Wet deposition (Gg S/N)	125	104	84	71	59	71
Total deposition (Gg S/N)	185	175	122	115	85	115
% contribution to total dep from shipping emissions	19	15	37	20	9	20

Dore, A.J., M. Vieno, Y.S. Tang, U. Dragosits, A. Dosio, K.J. Weston and M.A. Sutton (2007) Modelling the atmospheric transport and deposition of sulphur and nitrogen over the United Kingdom and assessment of the influence of SO₂ emissions from international shipping. *Atmos.Env.* **41**, 2355-2367.

Conclusion

➤ The FRAME model was applied to estimate S and N deposition in the UK. The model was able to reproduce measurements of gas & aerosol measurements & wet deposition.

> Emissions of SO_2 and NO_x from international shipping make a major contribution to S and N deposition in the UK (and to acidification / eutrophication).

There is considerable uncertainty in the global distribution and magnitude of emissions from international shipping

> Global emissions of SO₂ and NOx from international shipping are increasing by 1.5% - 2.5% year⁻¹.

➢ Future work will focus on incorporation of new fine (5km) resolution emissions maps into the model to more effectively model the transport of pollutants from ships in coastal areas.

Thank you for your attention