

MODELLING OF ATMOSPHERIC FLOW AND DISPERSION IN THE WAKE OF A CYLINDRICAL OBSTACLE

S. Andronopoulos¹, I. Mavroidis², A. Venetsanos¹, J.G. Bartzis³

¹Environmental Research Laboratory, Institute of Nuclear Technology and Radiation Protection, National Centre for Scientific Research "Demokritos", 15310 Aghia Paraskevi Attikis, Greece, e-mail: sandron@ipta.demokritos.gr

²Hellenic Open University, Patras, Greece

³Department of Energy Resources Management Engineering, University of Western Macedonia, Greece

Aim of the paper

- Computational study of the interaction of continuous plumes released from point sources with buildings
 - short-range dispersion of atmospheric pollutants in built-up areas
 - Simple, isolated structures: main characteristics of flow and dispersion
- Present case: Cylindrical obstacle ("building")
 - Previously studied case: "Atmospheric dispersion in the presence of a three-dimensional cubical obstacle: Modelling of mean concentration and concentration fluctuations", by Mavroidis, Andronopoulos, Bartzis, Griffiths, Atmospheric Environment 41 (2007), 2740-2756

Tools, data, methods

- CFD code ADREA-HF
 - Mean concentrations, concentration fluctuations
- Data from field experiments
 - "Field and wind tunnel investigations of plume dispersion around single surface obstacles", by Mavroidis, Griffiths, Hall, Atmospheric Environment 37 (2003) 2903-2918
- Comparisons of calculated with experimental results / model performance
- Study of computed dispersion patterns
- Comparisons between cylindrical and cubical obstacles

Experimental set up: cylinder

- Dual source:
 - Ammonia
 - Propane
- Ammonia source displaced laterally
- Height and diameter of cylinder H=1.15m
- Source and detector height: H/2
- Atmospheric stability: D (neutral)
- Wind speed: 2.6 4.5 m/s

Experimental set up: cube

- Dual source: •
 - Ammonia
 - Propane
- Ammonia source • displaced laterally
- Height and diameter of cylinder H=1.15m
- Source and detector height: H/2
- Atmospheric stability: D (neutral)
- Wind speed: 4.7 6.3 m/s

- Co-located UVIC and FID detectors
- Ammonia source locations

Experimental results: ammonia concentrations

Experimental results: ammonia concentration intermittency

Computational results: nondimensional mean concentration

Computational results: nondimensional concentration StD

Regulatory Purposes, 6 - 9/10/2008, Cavtat, Croatia

10

Model evaluation: turbulence closure schemes - k-/(1), k- ϵ , k-/(2)

FRFL

11

or

12th Int. Conf. on Harmo

Model evaluation : turbulence closure schemes - k-/(1), k- ϵ , k-/(2)

Non-dimensional ammonia concentration StD

FRFL

12

for

12th Int. Conf. on Harma

Model evaluation : turbulence closure schemes - k-/(1), k-/(2), k- ϵ

12th Int. Conf. on Harmonisation Million Conference of Section And Regulatory Purposes, 6 - 9/10/2008, Cavtat, Croatia

EREL

13

Model evaluation : turbulence closure schemes - k-/(1), k-/(2), k-ε

		Experimental		Calculated <i>k-I</i> (1)		Calculated <i>k-ε</i>		Calculated <i>k-I</i> (*)	
		۰.°H	۳.۰Η	۰.°H	۳.۰Н	۰.°Η	۳.۰Η	۰.°H	۳.۰Η
	N٠١	•_ ٤٢٣	<u>۲</u> ۳۸	•_ ٧٨٨	• 5 50	• 779	• 557	•_777	· 1 2 V
	N۰۲	• . ٣١٩	• 1 1 1	۰ <u>.</u> ۸۰٦	•_ ٤٦٣	۰ <u>٦</u> ٦٤	• 511	. 790	۰ <u>۱</u> ٦٨
Propane Concentration	N۰°	• 777	. 140	• ٧٩ •	. 201	• 7 5 7	. 209	٠.٢٨٠	. 101
	NII	• ٣٣٨	۰ ۲۳۸	• 0	•_£7)	۰ <u>٦</u> ٦١	•_ £ V A	· <u>·</u> ۲ ۸۸	• 175
	N۰۷	• <u></u>	• 177	•_ VAV	• 5 5 9	•_٦٣٦	. 207	<u>۲</u> ۷٦.	. 107
	Average	• • • • • • •	• 1 / 9	. 190	• 202	• . 7 2 7	• ٤٦٢	٠ ٢٨٠	. 101
	Calc/Exper			۳_٥٣	۲_٤.	۲.۰۲	۲_٤٥	۰ ۸۹	• <u> </u> ٨ £
		Experi	mental	Calculate	ed <i>k-I</i> (\)	Calcula	ted <i>k-ɛ</i>	Calculate	ed <i>k-I</i> (۲)
		Experi ∿.∘H	mental ″. ⋅ H	Calculate	ed <i>k-I</i> (¹) ਞ.∗H	Calcula ∙.∘H	ted <i>k-ε</i> [♥] .∙ H	Calculate ∙.॰H	ed <i>k-I</i> (۲) ۳.√H
	N۰۱	Experi •.॰H •.०٣٧	mental [♥] . • H • . ^۲ ∀۸	Calculate •.॰H १.•६६	ed <i>k-I</i> (١) ٣.٠H ٠.٨٢٠	Calcula ∙.॰H १ _. • ۱४	ted <i>k-ε</i> ۳.۰ H ۰.۹۳०	Calculato •.॰H •.४२०	ed <i>k-I</i> (۲) ۳.۰H
	N •) N • Y	Experi •. ॰H •.॒०٣٧ •.॒٤٧٨	mental <i>९.०</i> Н ०.४४० ०.४४०	Calculate ۰.۰H ۱.۰٤٤ ۱.۲۱۰	ed <i>k-I</i> ()) °. · H · . ^ Y · · . 9 0 9	Calcula •.॰H [\] .• \٧ •.٩٧٢	ted <i>k-ε</i> ۳.۰ Η ۰_۹۳० ۰_۹۷۷	Calculate •.॰H •.ੁ∨٦० •.ॖ੧•∧	ed <i>k-I</i> (۲) ۳.۰H ۰.٤۲٥ ۰.٥١٢
Propane	N • 1 N • 7 N • 9	Experi •. ॰H •.०٣٧ •.६٧٨ •.६४२	mental १.२म २.४४٨ २.४४२ २.४४२	Calculate	ed <i>k-I</i> ()) ۲.۰H . ۸۲۰ . ۹०۹ . ۸۹۷	Calcula •.॰H •.•।∨ •.٩∨٢ •.٩∧∨	ted <i>k-ɛ</i> ٣.٠H •ַ٩٣٥ •ַ٩٧٧ •ַ٩٦٦	Calculate •.॰H •.º४२० •.٩•٨ •.٨٤०	ed <i>k-I</i> (۲) ۳.۰H ٤٢٥ ο١٢
Propane	N • 1 N • 7 N • ° N 1 1	Experi •_ °H •_०٣٧ •_٤٧٨ •_٤١٦ •_٣٧٢	mental <i>٣.٠</i> Η . ٢٧٨ . ٢٣٥ . ٢٣٦ . <u></u> ٢٧١	Calculate	ed <i>k-1</i> (۱) °. • H • _^ \ Y • • _ 9 • 9 • _ \ 9 \ 9 • _ 9 • 0	Calcula •.॰H •.॰\٢ •.॰\٢ •.॰\٢ •.॰\٩	ted <i>k-ɛ</i> ٣.٠H . ٩٣٥ . ٩٧٧ . ٩٦٦ . ٩٨٣	Calculate •.॰H •.º२० •.٩•٨ •. <u></u> ٨٤० •. <u></u> ٨٩٩	ed <i>k-1</i> (۲) rH
Propane Concentration StD	N • ¹ N • ፕ N • ° N ነ ነ N • Y	Experi •. ॰H •. ॰ ٣٧ •. ٤٧٨ •. ٤١٦ •. ٣٧٢ •. ٣٣٩	mental °. • H • <u>.</u> ९४८ • <u>.</u> ९४२ • <u>.</u> ९४२ • <u>.</u> १४१ • <u>.</u> १९१	Calculate	ed <i>k-I</i> (۱) °. · H · △۲ · · △٩०٩ · △٩٧ · △٩٧ · △٩٥ · △△١	Calcula •.•H •.• ١٧ •.• ٩٧٢ •.• ٩٨٧ •.• ٩٧٩ •.• ٩٩٣	ted <i>k-ɛ</i> ٣.٠H . ٩٣૦ . ٩٣٧ . ٩٦٦ . ٩٦٦ . ٩٦٦	Calculate •.॰H •.º२० •.٩•٨ •.٨٤० •.٨٩٩ •.٨٢٩	ed <i>k-1</i> (۲) rH
Propane Concentration StD	N • 1 N • 7 N • 9 N 1 1 N • 7	Experi •.ºH •.º٣٧ •.٤٧٨ •.٤١٦ •.٣٧٢ •.٣٣٩	mental °. • H • <u>.</u> ९४٨ • <u>.</u> ९४२ • <u>.</u> ९४१ • <u>.</u> १४१ • <u>.</u> १९१	Calculate	ed <i>k-1</i> ()) rH . AT. . 909 . A9V . 900 . AA)	Calcula •.•H •.•\V •.•9\Y •.•9\Y •.•9\9 •.•99٣	ted <i>k-ɛ</i> ٣.٠H •.٩٣٥ •.٩٧٧ •.٩٦٦ •.٩٨٣ •.٩٦١	Calculate •.ºH •.º٦٥ •.٩•٨ •.٨٤٥ •.٨٩٩ •.٨٢٩	ed <i>k-1</i> (۲) rH 2۲0 017 270 01. 270
Propane Concentration StD	N · ۱ N · ۲ N · ° N ۱ ۱ N · ۷ Average	Experi •_ °Η •_ ⁶ ΥΛ •_£ΥΛ •_£Υ٦ •_٣ΥΥ •_٣٣٩ •_£Υ٩	mental °. • H • <u>.</u> ۲ <i>۳</i> २ • <u>.</u> ۲ <i>۳</i> २ • <u>.</u> ۲ <i>۳</i> २ • <u>.</u> १ <i>१</i> २	Calculate	ed <i>k-I</i> (۱) rH . ^7. . 909 . ^97 . ^97 . 900 . ^^1 . 9.7	Calcula •.•H •.•1٧ •.•9٧٢ •.•9٨٧ •.•9٨٩ •.•94٣ •.•9٨9	ted <i>k-ɛ</i> ٣.• H •. ٩٣٥ •. ٩٧٧ •. ٩٦٦ •. ٩٦٦ •. ٩٦٤	Calculate •.॰H •.º२० •.٩•٨ •.٨٤० •.٨٩٩ •.٨٢٩	ed <i>k-1</i> (۲) rH

	Average propane concentrations for CUBE											
	Experimental	Calculated, <i>k-l (</i> 1)	Ratio	Calculated, <i>k-ε</i>	Ratio							
۰.°H	· <u>·</u> ٧٣٩	۰ <u>٬</u> ۸۱٦	1_1.٣	۰ <u> </u> ۸۰۹	۹.4٤							
۳. ۰ Н	• <u></u> ٢٤٦	• ٤٣٨	1.444	•	۱ <u>.</u> ٩٩٣							
Average propane concentrations for CYLINDER												
	Experimental	Calculated, <i>k-l (</i> 1)	Ratio	Calculated, <i>k-ε</i>	Ratio							
۰.°H	• . ٣ ١ ٤	. 190	7_079	۰ <u>.</u> ٦٤٦	۲.0٦							
۳.∙Н	• 1 / 4	• 505	۲_٤٠٢	•_٤٦٢	₹₋₤₤⋏							
Average propane concentration StD for CUBE												
	Experimental	Calculated, <i>k-I</i> (۱)	Ratio	Calculated, <i>k-ε</i>	Ratio							
۰.°H	. 0 . 9	٠.٤٨٩	. 97.	•_ ٣٦٧	•_VY 1							
۳.۰Η	•_٣٢٢	• . ٤ • ٥	1_707		1							
Average propane concentration StD for CYLINDER												
	Experimental	Calculated, k-l (1)	Ratio	Calculated, <i>k-ε</i>	Ratio							
۰.°H	• 579	1.1 27	4.740	•_٩٨٩	۲.۳۰۸							
۳.۰Η	• <u> </u>	• 9 • 7	۳.۷۰۳	•_972	4° 4° 4							

12th Int. Conf. on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, 6 - 9/10/2008, Cavtat, Croatia

EREL

12th Int. Conf. on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, 6 - 9/10/2008, Cavtat, Croatia

22

12th Int. Conf. on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, 6 - 9/10/2008, Cavtat, Croatia

25

Summary and conclusions (1)

- Computational simulations of atmospheric dispersion experiments around isolated obstacles in the field
- CFD code ADREA-HF: dispersion of positively or negatively buoyant gases in complicated geometries
- Single cylindrical obstacle normal to the mean wind direction and two upwind sources of ammonia and propane, with the ammonia source located at different lateral positions
- Concentrations and concentration fluctuations for both gases were calculated by the model and compared with the experimental results
- Comparisons of experimental and model results with the case of dispersion around an isolated cubical obstacle are also presented and discussed

Summary and conclusions (2)

- Analysis of experimental results:
 - Variation of ammonia concentrations, concentration fluctuations and intermittency as the source is displaced laterally
 - Source at 0. H and 0.5 H: higher concentrations for cube
 - Sharper decrease of concentration with source displacement
 - Concentration peaks for source at 0.5 H (2, 3 and 5 H downwind)
 - Cylinder: fluctuations increase, cube: fluctuations peak for source at 1.5 H off
 - Intermittency increases with source displacement, more sharply for cube
- Computational results: k-l (2 versions for cylinder) and k-ε turbulence closure schemes tested

Summary and conclusions (3)

- Model performance evaluation:
 - "Scatter" plots for cylinder case
 - Ammonia concentrations
 - k-l(1) and k- ϵ similar performance, around factor-of-2
 - k-l(1) more points inside the factor-of-2 range, large overestimation for cases with large source displacement
 - Ammonia concentration StD
 - Most points inside the factor-of-2 range for all models
 - Ammonia concentration fluctuations
 - Most points inside the factor-of-2 range for all models
 - k-l(2) model results show little variation

Summary and conclusions (4)

- Model performance evaluation:
 - Propane results statistics:
 - "Ensemble" averages (same source position, stability conditions, similar wind)
 - The model performance for the cube case was better than for the cylinder case
 - The ratio Calc. / Exper. for concentrations is 2 times higher and for concentration StD is 3 times higher in the cylinder case
 - Ammonia concentration variation as the source is displaced laterally
 - k-l(1) and k-ε model results are similar and in general overestimate. Some peaks are predicted, only for the cube
 - k-l(2) model results are better for small source displacements but show little variation

Summary and conclusions (5)

- Model performance evaluation:
 - Ammonia concentration fluctuation variation as the source is displaced laterally
 - Models do not predict the experimental peak for the cube for source displaced 1.5 H off the centreline
 - k-l(2) model results show very little variation
 - Ammonia concentration profiles downwind
 - Experimental values are higher for the cube than for the cylinder close to the obstacle and decrease more sharply
 - k-l(1) and k results are similar and overestimate the
 experimental values for source placed at 0, 0.5, 1 and 1.5 H off
 the centreline
 - k-l(2) agree better for source placed at 0, 0.5, 1 H but are worse for source placed at 1.5 and 2 H off the centreline

Summary and conclusions (6)

- Model performance evaluation:
 - Ammonia concentration fluctuations profiles downwind
 - Model results peaks are "weaker" than the experimental and occur closer to the obstacle
 - For the cylinder case no peak is observed in the experimental data for source displacement above 1 H off centreline
 - k-l(2) model results are better for smaller source displacements, k-l(1) and k-ε are better for larger source displacements.
- Future work:
 - More detailed analysis of the differences in results and model performance between cubical and cylindrical obstacle cases

