Identification of the Origins of Elevated Atmospheric Mercury Episodes Using a Lagrangian Modelling System

D. Wen, J. Lin, F. Meng and J.J. Sloan

Waterloo Centre for Atmospheric Science University of Waterloo

Acknowledgements

- \circ Natural Sciences and Engineering Research Council Canada
- $\circ\,$ Ontario Power Generation Ltd.
- \circ Ontario Ministry of the Environment

HARMO 12; Meso-scale Meteorology and Air Quality Modelling Cavtat, Croatia; 8 October 2008

Approach

- Previously developed a model for the analysis of atmospheric mercury transport in North Eastern North America⁽¹⁾:
 - Nested Eulerian (Bullock CMAQ-Hg) model. Domains:
 - \checkmark North America
 - ✓ Great Lakes
 - ✓ Southern Ontario.
- Model application⁽²⁾ gives "natural" Hg emission from soil, water and vegetation; adds this to anthropogenic
 - ⁽¹⁾ Gbor *et al.*, " Improved Model for Mercury Emission, Transport and Deposition", Atmospheric Environment, **40**, 973-983 (2005).
 - ⁽²⁾ Gbor et al. "Modeling of mercury emission, transport and deposition in North America", Atmospheric Environment 41 1135–1149 (2007);

Natural Mercury Emissions

Natural Hg includes mineral and historical anthropogenic deposition.
Natural emission are based on measured soil and water mercury levels

Waterloo Centre for Atmospheric Sciences

Natural and Anthropogenic Emissions

• Average mercury emission fluxes (ng/m²/h) 1 Jan. to 30 Dec., 2002

Natural

Anthropogenic

CMAQ-Hg CTM Comparison with Measurement

 Eulerian CTM (including natural emission) does well in most cases, but fails for short episodes ("plumes") 2.8 -- model 2.6 measurement Hourly TGM Concentration, ng/m^3 — No Natural 2.4 2.2 2 1.8 1.6 1.4 1.2 Hourly TGM - Point Petre 1 16-May 20-May 28-May 1-Jun 4-May 8-May 12-May 24-May Day

Waterloo

Analysis of Model - Measurement Differences

oal: Identify sources of episodic differences

pproach:

- 1) Systematically compare the time series of CMAC-Hg CTM predictions with measurements to identify episodes that are not well described by the CTM
- 2) Examine these episodes using Lagrangian model
- Same meteorology and same emissions are used with both models. This saves computational time and effort.

dvantage: Eulerian CTM can be run at low resolution Waterle Centre for Materia Centre for Atmospheric Sciences

Lagrangian Modelling to Identify Plumes

• Why does Eulerian CTM differ from measurement?

- Differences with short term measurements due to spatial averaging at (low) 36 km resolution.
- Examine differences with: Stochastic Time-Inverted Lagrangian Transport (STILT) Model*
 - simulates upstream influences on a receptor by following the evolution of a particle ensemble backward in time
 - > Interpolates wind fields to the location of each particle
 - Simulates turbulent motions in PBL by a Markov chain process based on observed meteorological parameters.

*Lin, J.C., et al., J.G.R. 108, 4493 (2003)

Hg Transport with STILT

- Tracer emitted at any (surface) location is divided <u>equally</u> among particles originating there at altitudes below the turbulent mixing height.
 - Particle density at a specified receptor directly yields the tracer concentration at the receptor location.
 - Backward transport of particles from a receptor thus maps out locations and <u>strengths</u> of sources contributing to that receptor.
- Source strength: given by surface flux, particle density and residence time.
- Wet and dry deposition of the tracer are included

Source-Receptor Connection: the Footprint

 <u>Source footprint</u>: the concentration change at the receptor for a unit surface flux at the footprint location that persists for a specified time interval:

$$f(x_{r},t_{r} \mid x_{i},y_{j},t_{m}) = \frac{m_{air}}{h\overline{\rho}(x_{i},y_{j},t_{m})} \frac{1}{N_{tot}} \sum_{p=1}^{N_{tot}} \Delta t_{p,i,j,k}$$

- > $\overline{\rho}(x_i, y_j, t_m)$: local density of particles at the source (x_i, y_j, t_m)
- $\succ \Delta C_{m,i,j}(x_r,t_r) = f(x_r,t_r \mid x_i,y_j,t_m)F(x_i,y_j,t_m) \quad : \text{Change in}$

receptor concentration due to ensemble of air parcels remaining at source having emission flux: $F(x_i, y_j, t_m)$ for a time $\Delta t_{p,i,j,k}$

Example: Source Footprints for Hg at Burnt Island Receptor (February 2002)

- Points: Locations of Hg point sources
- > Colour: footprint (\log_{10} [ppm/µmole/m²/s])

Hg Concentrations at Burnt Island (February 2002)

• STILT reproduces episodes better than (low resolution) regional model

Waterloo

This Study: Total Hg Emission and Measurements

Monitoring Sites Egbert and Point Petre (February 2002)

Conclusions

- Lagrangian model can identify and quantify sources causing short term plumes that are not well characterised by Eulerian CTM
- Same meteorology and emissions are used in both cases leading to a small increase in computational effort
- Lagrangian particle model examines only that part of the space that is relevant to the measurement
- Use of large numbers of Lagrangian particles (hundreds-thousands) ensures accuracy of source identification

