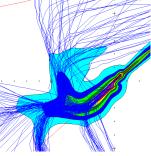
### Methodology for the creation of meteorological datasets for Local Air Quality modelling at airports

Nicolas DUCHENE, James SMITH (ENVISA) Ian FULLER (EUROCONTROL Experimental Centre)



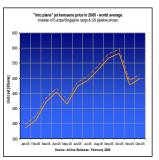

HARMO12 conference, Cavtat, Croatia

6-9 October 2008

## **About ENVISA**

#### Noise Studies ENHANCE Environmental Impact Assessment of CDA




#### Global Emissions & Local Air Quality AEM, ALAQS CAEP Goals Assessment

Environmental Impact of Delays

#### **Economics & Sustainability**

Cost Benefit Analyses Environmental Tradeoffs







HARMO12 conference, Cavtat, Croatia

6-9 October 2008

## **Overview of the presentation**

- 1. Data requirements for Local Air Quality studies at airports
- 2. Three sources of meteorological data
  - Monitored data (METAR)

envisa

- Numerical weather prediction models (WRF)
- Archived data (Re-Analysis)
- 3. Methodology to create datasets for Local Air Quality studies
- 4. Case study: two airports in south-east England



## **Basic data for dispersion model**

- Emission inventory results (time + space)
- Topography
- Chemistry
- Key meteorological data
  - Wind speed and direction (straightforward)
  - Temperature, pressure, humidity (depending on the dispersion model)
  - **Stability** (not directly measured !)



### Three ways to obtain meteo data

- 1. METAR data from monitoring stations located at airports (generated for aviation purposes, but very suitable for air quality studies)
- 2. WRF from numerical weather models (high expertise of meteorology required)
- 3. Re-Analysis from long term / large scale archived data



### **1. METAR Aviation Weather Reports**

- from the French "METéorologique Aviation Régulière".
- Routine weather report from airports

| PROS                                                                          | CONS                                                                    |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Very detailed monitoring - most<br>METAR reports in the EU are<br>half-hourly | Available only for airport<br>opening hours (i.e. no data<br>overnight) |
| Generated by automated sites                                                  | Stability must be calculated using other parameters                     |
| Usually reviewed by certified weather forecasters prior to being transmitted  | Local scale only                                                        |



### **1. METAR Weather Components**

- Wind speed and direction
- Visibility
- RVR (Runway Visual Range)
- Cloud cover
- Temperature / Dew Point
- QNH (barometric pressure extrapolated to sea level)
- Recent weather
- Wind shear
- Trend



### **1. METAR Example: CROATIA**

- METAR LDDU 171230Z 25008KT 210V310 9999 BKN043 20/04 Q1013 NOSIG
- METAR LDOS 171230Z 29006KT 9999 BKN030 11/05 Q1018 NOSIG
- METAR LDPL 171230Z 13005KT 000V360 9999 FEW055 19/03 Q1018 NOSIG
- METAR LDRI 171230Z VRB02KT 9999 FEW047 19/02 Q1018 NOSIG
- METAR LDSP 171230Z 07006KT 020V130 CAVOK 20/02 Q1015 NOSIG
- METAR LDZD 171230Z VRB06KT 9999 FEW050 20/03 Q1017 NOSIG
- METAR LDZA 171230Z VRB03KT CAVOK 16/02 Q1019 NOSIG

### Extracted from NOAA METAR Data Access Web Site:

http://weather.noaa.gov/weather/metar.shtml



### **1. METAR Example Decoded Part A**



|   | ICAO | Station Name     | Country | Location       | Elevation         | Time        | <b>Temperature</b> | Dew<br>Point | RH  | Wind                       |
|---|------|------------------|---------|----------------|-------------------|-------------|--------------------|--------------|-----|----------------------------|
|   | LDDU | Dubrovnik-Cilipi | Croatia | 42-34N 018-16E | 170m              | 17 / 12:30Z | 20.0°C             | 4.0°C        | 35% | WSW (250 degrees) at 4 m/s |
| X | LDOS | Osijek           | Croatia | 45-28N 018-49E | 89m               | 17 / 12:30Z | 11.0°C             | 5.0°C        | 66% | WNW (290 degrees) at 3 m/s |
|   | LDPL | Pula             | Croatia | 44-53N 013-55E | <mark>63</mark> m | 17 / 12:30Z | 19.0°C             | 3.0°C        | 35% | SE (130 degrees) at 3 m/s  |
|   | LDRI | Rijeka/Omisalj   | Croatia | 45-13N 014-34E | 85m               | 17 / 12:30Z | 19.0°C             | 2.0°C        | 32% | Variable at 1 m/s          |
|   | LDSP | Split/Kastel Sta | Croatia | 43-31N 016-18E | 21m               | 17 / 12:30Z | 20.0°C             | 2.0°C        | 30% | ENE (70 degrees) at 3 m/s  |
|   | LDZD | Zadar/Zemunik    | Croatia | 44-06N 015-22E | 84m               | 17 / 12:30Z | 20.0°C             | 3.0°C        | 32% | Variable at 3 m/s          |
|   | LDZA | Zagreb/Pleso     | Croatia | 45-43N 016-04E | 110m              | 17 / 12:30Z | 16.0°C             | 2.0°C        | 39% | Variable at 2 m/s          |



### **1. METAR Example Decoded Part B**

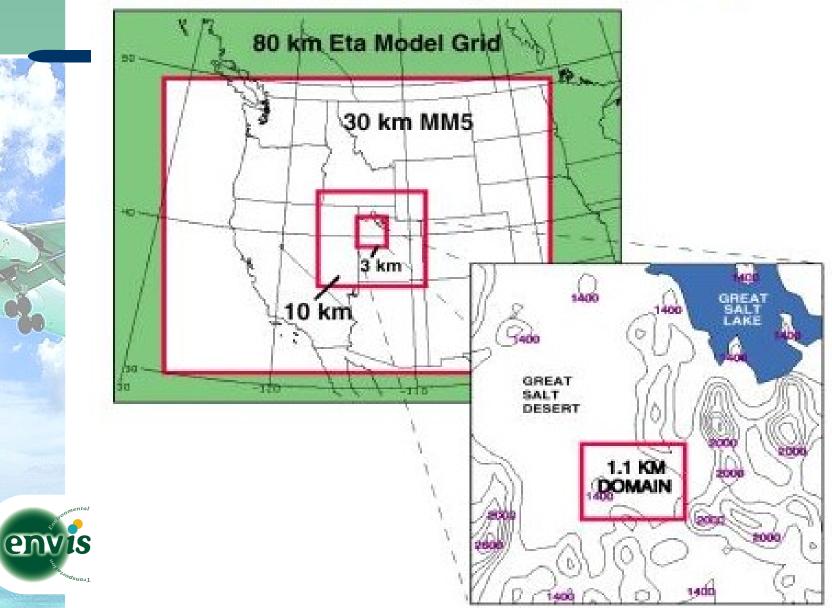
| ICAO | Station Name     | Country | Visibility | Pressure  | Sky Condition          | Weather | Remarks | Heat<br>Index | Wind<br>Chill |
|------|------------------|---------|------------|-----------|------------------------|---------|---------|---------------|---------------|
| LDDU | Dubrovnik-Cilipi | Croatia | > 10000m   | 1012.9 mb | Broken clouds at 1300m |         |         | N/A           | N/A           |
| LDOS | Osijek           | Croatia | > 10000m   | 1017.9 mb | Broken clouds at 910m  |         |         | N/A           | N/A           |
| LDPL | Pula             | Croatia | > 10000m   | 1017.9 mb | Few clouds at 1700m    |         |         | N/A           | N/A           |
| LDRI | Rijeka/Omisalj   | Croatia | > 10000m   | 1017.9 mb | Few clouds at 1400m    |         |         | N/A           | N/A           |
| LDSP | Split/Kastel Sta | Croatia | > 10000m   | 1014.9 mb |                        |         |         | N/A           | N/A           |
| LDZD | Zadar/Zemunik    | Croatia | > 10000m   | 1016.9 mb | Few clouds at 1500m    |         |         | N/A           | N/A           |
| LDZA | Zagreb/Pleso     | Croatia | > 10000m   | 1019.0 mb | -                      |         |         | N/A           | N/A           |



### **Deriving stability from observed data**

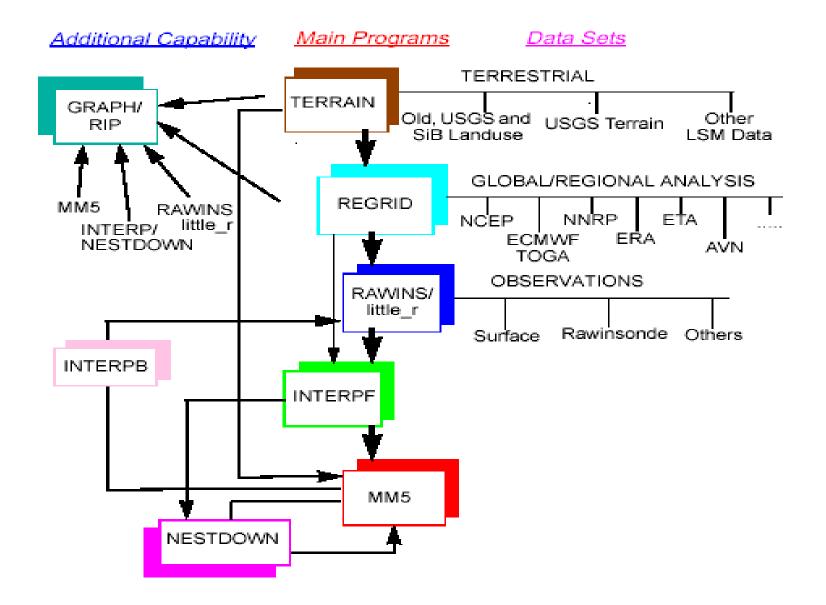
- Stability is generally not monitored, so it must be derived from other observed parameters
- Stability is based on the "Turner method" which is recommended by the US Environmental Protection Agency
- The Pasquill-Gifford stability classes (A 'very unstable' to G 'very stable') are calculated based on the following variables:
  - wind speed
  - cloud cover (sky condition)
  - sun angle (time of day, latitude of airport)




## 2. MM5 Weather Model

- Meso-scale numerical weather prediction model
- From the US National Center for Atmospheric Research
- Free community model used by over 400 institutions in 30 countries

| PROS                                                         | CONS                                            |
|--------------------------------------------------------------|-------------------------------------------------|
| Used for weather prediction and weather data collection      | Needs a high level of expertise in meteorology  |
| Very accurate data on a very fine spatial and temporal grid  | High computing time                             |
| Data available in 3D gridded format for sophisticated models | Complex input data (terrain,<br>meteo) + format |
| Stability explicitly available                               |                                                 |


en

### MM5 Domain Configuration



)8

#### The MM5 Modeling System Flow Chart



### 2. Mandatory MM5 Input Requirements

- Gridded 2D fields (surface data): sea-level pressure, sea-surface temperature, snow cover, sea ice cover, soil temperature, soil moisture
- Gridded 3D fields (upper air data): temperature, wind speed and direction, pressure, relative humidity, etc.

#### Note: Can Use NCEP/NCAR REANALYSIS 2 DATA SET



HARMO12 conference, Cavtat, Croatia

### 2. Observational Data for MM5

- Optional data
- Upper air observations: pressure, height, temperature, humidity, wind speed and direction (e.g. balloons and aircraft)
- Surface observations: winds, cloud cover, precipitation, maximum and minimum temperature (e.g. airports, weather stations, ships, buoys)

### Note: can use METAR for surface data



HARMO12 conference, Cavtat, Croatia

### 2. MM5 Model Output: 2D Fields

- Cloud ceiling
- Accumulated precipitation
- Planetary boundary layer height
- Surface evaporation
- Soil moisture/temperature
- Surface/underground runoff
- Snow depth
- Surface roughness/friction
- Flight regulation (VFR, MVFR, IFR, LIFR) via post-processor
- Etc.

#### There are hundreds of fields available !



### 2. MM5 Model Output: 3D Fields

- Wind speed and direction
- Vertical wind shear
- Temperature
- Relative humidity
- Pressure
- Cloud/rain/snow/ice water content
- Radiation fluxes
- Clear air turbulence via post-processor
- Etc.

#### There are hundreds of fields available !



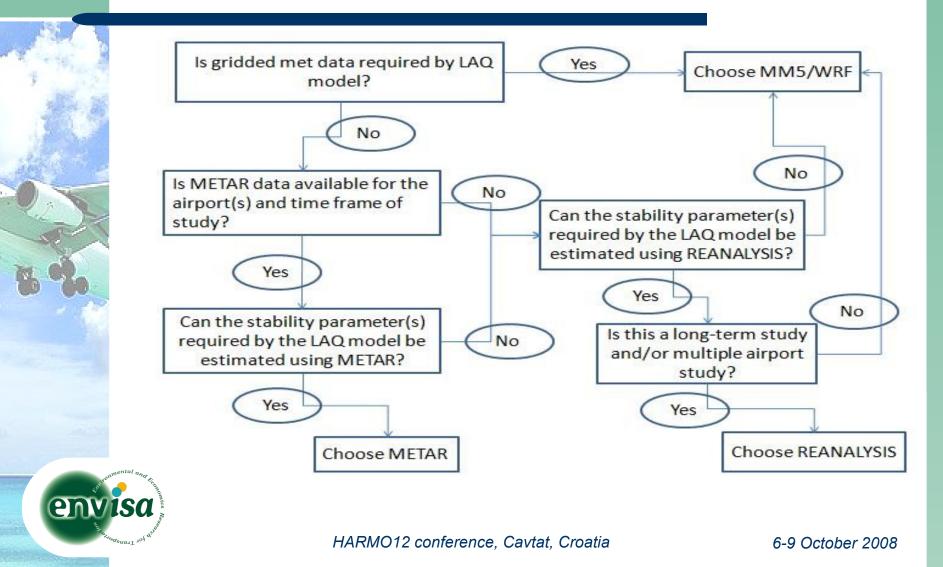
### 2. WRF Weather Model (New MM5)

- "Weather Research and Forecasting"
- Co-developed by research and operational communities
  - ARW core "Advanced Research WRF"
  - NMM core "Nonhydrostatic Mesoscale Model"
- Supersedes MM5
- Freely available



### 3. Re-Analysis data

- From two US National Centers:
  - for Environmental Prediction NCEP
  - for Atmospheric Research NCAR
- Analysis / forecast system prepares re-analysis data
- Over 80 different variables (temperature, relative humidity, U and V wind components, etc.)
- 17 pressure levels (heights)
- 2.5 x 2.5 degree grids, 4 times daily
- Diagnostic terms (radiative heating, convective heating, etc.) and accumulative variables (precipitation rate, etc.)



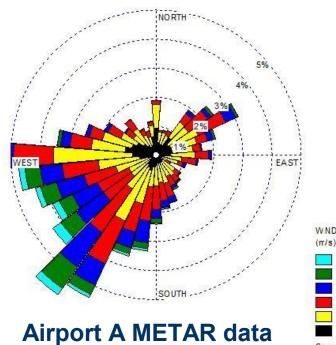

### 3. Re-Analysis data

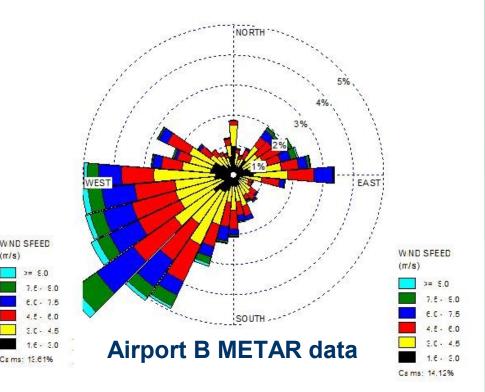
| PROS                                                              | CONS                                                                                                        |
|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Data available since 1948                                         | Fixed spatial and temporal<br>resolution . Data must be<br>interpolated to be used in<br>dispersion models. |
| Great set of information<br>available (80 different<br>variables) | Very coarse resolution (2.5 x<br>2.5 degree grid, 4 times a<br>day)                                         |
| Large datasets can be extracted quickly                           | Stability must be calculated based on other parameters                                                      |
| "Good guess" meteo data                                           |                                                                                                             |



### Method to choose meteo data source




### Case study at two airports


- Two airports in the same region: south-east England
- Distance between airports ~20 km
- For both airports, METAR data was available from the airport weather station
  - At airport A, reports were issued every 30 minutes
  - At airport B, reports were issued every hour but only for day-time

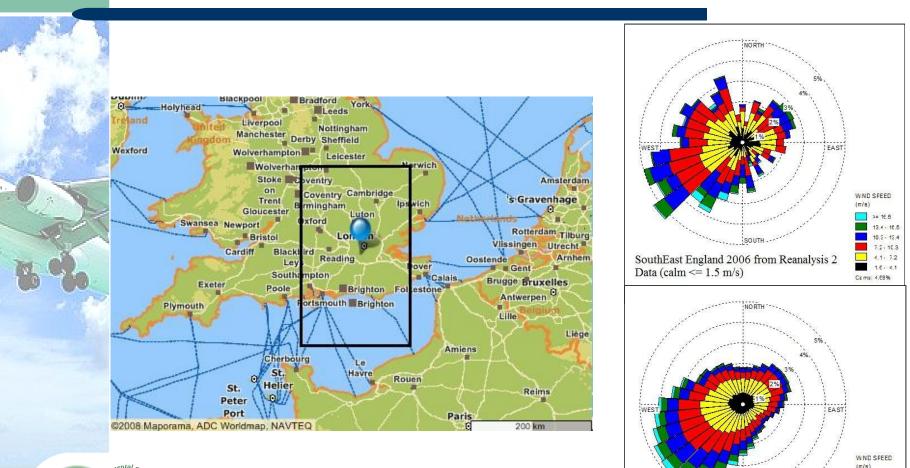


### **Approach followed (1)**

Comparison of meteo data at airport A and airport B for common open hours for wind speed, direction and calculated stability.








### **Approach followed (2)**

- Since differences in wind speed, in direction frequencies and in stability classes were small, it was decided to use the METAR data from airport A to estimate the meteo at airport B during the missing hours
- This was also valid because the two airports were fairly close to each other



## **Re-analysis data for S-E England**



envisor and and the state

HARMO12 conference, Cavtat, Croatia

SouthEast England 1979-2007 from Reanalysis 2 Data (calm <= 1.5 m/s)

SOUTH

>= 16.5

10.8 - 13.4

7.2 - 10.3

1.6 - 4.1

Cams: 4.10%

### **Re-analysis data**

- Was also used to validate the results of the local air quality studies for policy usage
- Trends of the period 1979-2007 were compared with the year 2006 only
- The results showed that 2006 could be considered as a "standard year" because no particular extreme weather event suggest it was abnormal
- Therefore, the dispersion results (i.e. concentrations) were considered to be "standard" (from the met. point of view)



## Conclusion

- 1. Detailed monitored data (METAR) should be preferred for airport air quality studies
- 2. If no METAR reports exist at one airport, then airports in the surrounding area should be investigated
- 3. Otherwise, use data from Numerical Weather Prediction models (or in the worst case, Reanalysis data)
- 4. Re-analysis data is best used to validate that the meteorological conditions of the dispersion period are not exceptional



### **Web references**

METAR Data Access Web Site: http://weather.noaa.gov/weather/metar.shtml

Turner Method: http://www.webmet.com/met\_monitoring/641.html

MM5 model: http://www.mmm.ucar.edu/mm5/

WRF model: http://www.wrf-model.org/index.php

env

NCEP/NCAR Re-Analysis:

http://www.cdc.noaa.gov/cdc/data.ncep.reanalysis2.html

# Methodology for the creation of meteorological datasets for Local Air Quality modelling at airports

#### Thank you for your attention!





HARMO12 conference, Cavtat, Croatia

6-9 October 2008