

12th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes

Determination of background concentrations using spectrum analysis of monitoring data

O. Tchepel, A.M. Costa, H. Martins, C. Borrego

Presentation outline

- Introduction
- Objectives
- Methodology
- Application example
- Results
- Conclusions

Introduction

"Background concentration" - due to the impact of nearby sources other than the ones currently under consideration

Background concentrations for the local scale application:

Objectives

inappropriate selection of background pollutant levels could be a significant source of uncertainty in the modelling results

development of a methodology to determine representative background concentrations from air quality monitoring data to be used by local scale models

spectral analysis of the data

2 decomposition of the time series

Contribution of different frequencies to the variance

Remove the short-term variations

Methodology

spectral analysis of the data

a time series X_t of length N is presented as a linear combination of harmonic functions with frequencies $\{f_j\}$ and amplitudes $\{A_j\}$ and $\{B_j\}$: $X_t = \mu + \sum_{j=1}^{\lfloor N/2 \rfloor} \left[A_j \cos(2\pi f_j t) + B_j \sin(2\pi f_j t)\right],$ FFT

spectral analysis of the data

1 year measurements at the frequency domain

Methodology

2) decomposition of the data

Kolmogorov-Zurbenko filter **Multiple-pass moving average filter:**

The KZ(*m*,*k*) filter of the original time series is computed as a simple moving average of *m* points applied *k* times (number of iterations)

$$-w_{c} \approx \frac{\sqrt{6}}{\pi} \sqrt{\frac{1 - (1/2)^{1/2k}}{m^{2} - (1/2)^{1/2k}}}$$

separation frequency

HARMO12 October 6-9, 2008

 $C(t) = C^{B}(t) + C^{S}(t)$

Methodology

Application example

Simulation period:

27 - 28 of May 2006

Entrecampos urban station:

- 81 days with PM₁₀ exceedences in 2006
- >30% due to natural events

NOAA HYSPLIT MODEL Backward trajectories ending at 12 UTC 27 May 06 FNL Meteorological Data

Application example

 PM_{10} concentrations are underestimated primarily because long-range transport from North Africa is not considered in the model application

KZ filter is designed to remove short-term fluctuations with the period < 12h:

Results

PM₁₀ concentrations estimated by VADIS model

Range of the expected values is defined as a difference between measurements at urban traffic station and the background concentrations => negative values!!! HARMO12 October 6-9, 2008

Conclusions

• A new methodology to derive background concentrations based on decomposition of time series is proposed

• The background concentration estimated by application of this methodology allow to improve the local-scale model performance and to reduce the uncertainty of modelling results.

• Application of the proposed methodology to the episodes when background stations reveal higher values than the traffic station is limited.

• Future research is required to understand how urban background concentrations are related with the concentrations observed at street level.