

12th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes

Determination of background concentrations using spectrum analysis of monitoring data

O. Tchepel, A.M. Costa, H. Martins, C. Borrego

Presentation outline

- Introduction
- Objectives
- Methodology
- Application example
- Results
- Conclusions

Introduction

"Background concentration" - due to the impact of nearby sources other than the ones currently under consideration

Background concentrations for the local scale application:

Objectives

inappropriate selection of background pollutant levels could be a significant source of uncertainty in the modelling results

development of a methodology to determine representative background concentrations from air quality monitoring data to be used by local scale models

1. spectral analysis of the data

Contribution of different frequencies to the variance
Remove the short-term variations

Methodology

> spectral analysis of the data

$$
+=\text { MOMOMOMOMOMON }
$$

a time series X_{t} of length N is presented as a linear combination of harmonic functions with frequencies $\left\{f_{j}\right\}$ and amplitudes $\left\{A_{j}\right\}$ and $\left\{B_{j}\right\}$:

$$
X_{t}=\mu+\sum_{j=1}^{[N / 2]}\left[A_{j} \cos \left(2 \pi f_{j} t\right)+B_{j} \sin \left(2 \pi f_{j} t\right)\right]
$$

Methodology

> spectral analysis of the data

1 year measurements at the frequency domain

Methodology

2) decomposition of the data

Data filtering

若
Low-pass pa filter

Kolmogorov-Zurbenko filter
Multiple-pass moving average filter:

The $\operatorname{KZ}(m, k)$ filter of the original time series is computed as a simple moving average of m points applied k times (number of iterations)
separation frequency

$$
\mathrm{C}(\mathrm{t})=\mathrm{C}^{\mathrm{B}}(\mathrm{t})+\mathrm{C}^{\mathrm{S}}(\mathrm{t})
$$

Methodology

Urban background station:
Original data and after the filtering

Background concentrations after the filtering and Urban traffic station data

Application example

Simulation period:

27-28 of May 2006

Entrecampos urban station:

- 81 days with PM_{10} exceedences in 2006
- >30\% due to natural events

NOAA HYSPLIT MODEL
Backward trajectories ending at 12 UTC 27 May 06
FNL Meteorological Data

Mesoscale model
AQ

measurement

CFD model

CFD model

Application example Local scale modelling

VADIS - Eulerian / Lagrangian CFD model

$>1500 \mathrm{~m} \times 1500 \mathrm{~m} \times 60 \mathrm{~m}$ in Lisbon city centre
$>$ resolution $10 \mathrm{~m} \times 10 \mathrm{~m} \times 5 \mathrm{~m}$
>29 buildings with an average height of 12 m
> 8 main roads
$>$ TREM: hourly PM_{10} traffic emissions
> MM5: meteorological conditions
(wind velocity and direction, turb. kinetic energy)

Application example

Locations of air the quality monitoring stations

Results
 Mesoscale model results: PM_{10} concentrations

LOURES - urban background stration

ENTRECAMPOS - urban traffic stration

PM_{10} concentrations are underestimated primarily because long-range transport from North Africa is not considered in the model application

Results

Background concentrations from the mesoscale model

CAMx

VADIS

VADIS results: PM_{10} concentrations

Results

Background concentrations from the

 monit~~ine N-t-

1) FFT

2)

$$
\begin{array}{ll}
\mathrm{KZ}_{3,3} & \begin{array}{l}
\text { filter width } \mathrm{m}=3 \\
\text { number of iterations } \mathrm{n}=3 \\
\text { separation frequency } \mathrm{w}=0.0905 \mathrm{~h}^{-1}
\end{array}
\end{array}
$$

KZ filter is designed to remove short-term fluctuations with the period $<12 \mathrm{~h}$:

Results

Entrecampos measurements

46

Local contribution

Results

PM_{10} concentrations estimated by VADIS model

hours
— VADIS results
range of the expected values

observed concetrations $\mu \mathrm{g} . \mathrm{m}^{-3}$

Range of the expected values is defined as a difference between measurements at urban traffic station and the background concentrations => negative values!!!

Conclusions

- A new methodology to derive background concentrations based on decomposition of time series is proposed
- The background concentration estimated by application of this methodology allow to improve the local-scale model performance and to reduce the uncertainty of modelling results.
- Application of the proposed methodology to the episodes when background stations reveal higher values than the traffic station is limited.
- Future research is required to understand how urban background concentrations are related with the concentrations observed at street level.

