The MUST model evaluation exercise: Statistical analysis of modelling results

Jörg Franke,

J. Bartzis, F. Barmpas, R. Berkowicz, K. Brzozowski, R. Buccolieri, B. Carissimo, A. Costa, S. Di Sabatino, G. Efthimiou, I. Goricsan, F. Hellsten, M. Ketzel, B. Leitl, R. Nuterman, H. Olesen, E. Polreich, J. Santiago, R. Tavares

HARMO 12

12th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes

Cavtat, 6-9 October 2008

- Introduction
- Definition of hit rate
- Resulting metrics for the flow field at towers
- Definition of BOOT metrics for concentrations
- Resulting metrics for concentrations
- Definition of mean metrics for concentrations
- Resulting mean metrics for concentrations
- Conclusions

COST 732 protocol for model evaluation – validation part

- qualitative data analysis
- quantitative data analysis with metrics
- Metrics for validation
 - hit rate and BOOT metrics
 - point by point comparison (paired in space; statistically steady results)
 - available for app. 30 CFD model runs (in principle)
 - => Statistics of metrics from individual model results (N-version testing)
- MUST wind tunnel case with –45° approach flow

• **Hit rate** $q = \frac{1}{N} \sum_{n=1}^{N} i_n \quad i_n = \begin{cases} 1 & \text{if } ||O_n - P_n| / O_n| \le \Delta_r \text{ or } |O_n - P_n| \le \Delta_a \\ 0 & \text{otherwise} \end{cases}$

with N: number of measurement positions

- O_n : observation at position n
- P_n : prediction at position n

 $\Delta_r = 0.25$ (allowed **relative** difference)

 Δ_{a} (allowed **absolute** difference)

equal to measurement uncertainty

	U/U _{ref}	W/U _{ref}	k/U _{ref} ²
Δ_{a}	0.008	0.007	0.005

11/05/08

Definition of hit rate for flow field

• Hit rate

$$q = \frac{1}{N} \sum_{n=1}^{N} i_n \qquad i_n = \begin{cases} 1 & \text{if } ||O_n - P_n| / O_n| \le \Delta_r \text{ or } |O_n - P_n| \le \Delta_a \\ 0 & \text{otherwise} \end{cases}$$

Jörg Franke|Department of Fluid- and Thermodynamics|University of Siegen

Hit rate

$$q = \frac{1}{N} \sum_{n=1}^{N} i_n \qquad i_n = \begin{cases} 1 & \text{if } \|(O_n - P_n)/O_n\| \le \Delta_r \text{ or } |O_n - P_n| \le \Delta_a \\ 0 & \text{otherwise} \end{cases}$$

with N: number of measurement positions

- O_n: observation at position n
- P_n : prediction at position n

 $\Delta_r = 0.25$ (allowed **relative** difference)

 Δ_{a} (allowed **absolute** difference) equal to measurement uncertainty

_	U/U _{ref}	W/U _{ref}	k/U _{ref} ²
Δ_{a}	0.008	0.007	0.005

=> evaluated at 497 tower measurement positions

• Hit rate for mean velocities (at 497 tower measurement positions)

Jörg Franke|Department of Fluid- and Thermodynamics|University of Siegen

• Hit rate for turbulent kinetic energy (at towers)

difference in definition

$$\left(\frac{k}{U_{ref}^2} \right)_o = 0.5 \cdot \left[\left(\frac{U_{rms}}{U_{ref}} \right)_o^2 + 2 \cdot \left(\frac{W_{rms}}{U_{ref}} \right)_o^2 \right]$$

$$\left(\frac{k}{U_{ref}^2} \right)_p = 0.5 \cdot \left[\left(\frac{U_{rms}}{U_{ref}} \right)_p^2 + \left(\frac{V_{rms}}{U_{ref}} \right)_p^2 + \left(\frac{W_{rms}}{U_{ref}} \right)_p^2 \right]$$

has only a very small influence on the hit rate

- Normalised concentration $C^* = C \cdot U_{ref} \cdot H^2 / Q_{source}$
- **BOOT metrics** $FAC2 = \text{fraction of data with } 0.5 \le C_p^* / C_o^* \le 2$

$$FB = 2\left(\left\langle C_{o}^{*}\right\rangle - \left\langle C_{p}^{*}\right\rangle\right) / \left(\left\langle C_{o}^{*}\right\rangle + \left\langle C_{p}^{*}\right\rangle\right) \quad NMSE = \left\langle \left(C_{o}^{*} - C_{p}^{*}\right)^{2}\right\rangle / \left\langle C_{o}^{*}\right\rangle \cdot \left\langle C_{p}^{*}\right\rangle$$

$$MG = exp\left(\left\langle \ln C_o^* \right\rangle - \left\langle \ln C_p^* \right\rangle\right) \qquad VG = exp\left[\left\langle \left(\ln C_o^* - \ln C_p^*\right)^2 \right\rangle\right]$$

for MG and VG threshold Δ_a = 0.003 (measurement uncertainty)

• Measurement positions (256)

z = H/2

11/05/08

11/05/08

Results for –45° approach flow case

Jörg Franke|Department of Fluid- and Thermodynamics|University of Siegen

Definition of mean metrics (N-version testing)

• Metrics from mean results at measurement positions (M=13)

$$\overline{C_p^*} = 1/M \sum_{j=1}^{M} C_{p,j}^* \qquad \widetilde{C}_p^* = median [C_{p,j}^*]_{j=1,M}$$
$$\Rightarrow \textbf{e.g.} \quad \overline{q} \equiv q (\overline{C_p^*}), \quad \widetilde{q} \equiv q (\widetilde{C_p^*})$$

• Mean metrics from individual metrics of the models (M=13) metrics of model run j: X_j

mean metrics
$$\hat{Y} = 1/M \sum_{j=1}^{M} X_j$$
 $\hat{Z} = median [X_j]_{j=1,M}$

standard deviations

$$S = \left[\frac{1}{(M-1)} \sum_{j=1}^{M} \left(X_{j} - \hat{Y} \right)^{2} \right]^{1/2} \quad T = \frac{1}{0.6745} \sqrt{M/(M-1)} median \left(\left| X_{j} - \hat{Z} \right| \right)^{1/2}$$

confidence intervals (95%, based on student t distribution)

$$P_{S} = 2.179S$$
 $P_{T} = 2.179T$

11/05/08

Jörg Franke|Department of Fluid- and Thermodynamics|University of Siegen

Validation metrics for the MUST –45° case

- concise indication of model performance
- hit rate for flow low for velocity components with small magnitude
- state of the art achievable for all concentration metrics
- further analysis of the statistics of metrics (N-version testing) necessary

• Metrics from mean results at measurement positions (M=13)

averages
$$\overline{C_p^*} = 1/M \sum_{j=1}^M C_{p,j}^*$$
 $\widetilde{C}_p^* = median [C_{p,j}^*]_{j=1,M}$

standard deviations

$$\overline{\sigma_{p}} = \left[\frac{1}{M-1}\sum_{j=1}^{M} \left(C_{p,j}^{*} - \overline{C_{p}^{*}}\right)^{2}\right]^{1/2} \quad \widetilde{\sigma}_{p} = 1/0.6745\sqrt{M/(M-1)} \operatorname{median}\left(\left|C_{p,j}^{*} - \widetilde{C_{p}^{*}}\right|\right)^{2}\right]^{1/2} \quad \widetilde{\sigma}_{p} = 1/0.6745\sqrt{M/(M-1)} \operatorname{median}\left(\left|C_{p,j}^{*} - \widetilde{C_{p}^{*}}\right|\right)^{2}\right]^{1/2} \quad \widetilde{\sigma}_{p} = 1/0.6745\sqrt{M/(M-1)} \operatorname{median}\left(\left|C_{p,j}^{*} - \widetilde{C_{p}^{*}}\right|\right)^{2}\right]^{1/2} \quad \widetilde{\sigma}_{p} = 1/0.6745\sqrt{M/(M-1)} \operatorname{median}\left(\left|C_{p,j}^{*} - \widetilde{C_{p}^{*}}\right|\right)^{2}\right)^{1/2} \quad \widetilde{\sigma}_{p} = 1/0.6745\sqrt{M/(M-1)} \operatorname{median}\left(\left|C_{p,j}^{*} - \widetilde{C_{p}^{*}}\right|\right)^{2}$$

Jörg Franke|Department of Fluid- and Thermodynamics|University of Siegen

Jörg Franke|Department of Fluid- and Thermodynamics|University of Siegen

