

Determination of concentration fluctuations within an instantaneous puff

Wind tunnel experiments

Cierco¹ F.-X., Soulhac¹ L., Méjean¹ P., Armand² P., Salizzoni¹ P.

¹Université de Lyon, ²CEA-DAM

Introduction

0

- The question of short or instantaneous releases is of special interest for :
 - Accidental or deliberate release in industrial or urban areas
 - Transport of hazardous materials

Introduction

•

Short release dispersion requires specific attention :

- The concentration distribution is the result of a single realization (not an ensemble average)
- Necessity to estimate the 1st, 2nd, 3rd... moments of the concentration distribution
- With the followings restrictions :
 - Operational purposes require short computation times
 - Few available data to feed the models
 - Design wind tunnel experiments so as to :
 - Characterize concentrations statistics for short releases

 Develop a theoretical framework for an operational dispersion model : SIRANERISK, Soulhac et al., 2007 in Cambridge

Description of a short term release

•

•

- The turbulent nature of the flow induces a particular behavior for each release
 - Operational dispersion models are limited to statistic approaches

Instantaneous and mean puff

X

At a given time t

Concentration variability

С

Variability due to the displacement of the puff centre

Х

Instantaneous puff descriptors

Derivation of equations

• $C_r(x,y,z,t)$

٠

TRALE

$$\overline{\mathbf{c}_{r}}(\mathbf{x},\mathbf{y},\mathbf{z},\mathbf{t}) = \frac{\mathbf{M}(\mathbf{x}_{0},\mathbf{y}_{0},\mathbf{z}_{0},\mathbf{t}_{0})}{(2\pi)^{3/2}\sigma_{\mathbf{x},r}\sigma_{\mathbf{y},r}\sigma_{\mathbf{z},r}} e^{-\frac{1}{2}\left[\frac{(\mathbf{x}-\mathbf{x}_{c})^{2}}{\sigma_{\mathbf{x},r}^{2}}\right]} e^{-\frac{1}{2}\left[\frac{(\mathbf{y}-\mathbf{y}_{c})^{2}}{\sigma_{\mathbf{y},r}^{2}}\right]} e^{-\frac{1}{2}\left[\frac{(\mathbf{z}-\mathbf{z}_{c})^{2}}{\sigma_{\mathbf{z},r}^{2}}\right]} = \mathbf{c}_{r,0}e^{-\frac{1}{2}\left[\frac{(\mathbf{x}-\mathbf{x}_{c})^{2}}{\sigma_{\mathbf{x},r}^{2}} + \frac{(\mathbf{y}-\mathbf{y}_{c})^{2}}{\sigma_{\mathbf{y},r}^{2}} + \frac{(\mathbf{z}-\mathbf{z}_{c})^{2}}{\sigma_{\mathbf{z},r}^{2}}\right]}$$

- Yee and Wilson (2000) : $\frac{\overline{C^{n}(x,y,z,t)}}{c_{r,0}^{n}} = \frac{\left[\frac{1}{k^{n}}\frac{\Gamma(n+k)}{\Gamma(k)}\right]}{(1+nM_{x})(1+nM_{y})(1+nM_{z})}e^{-\frac{1}{2}\left[\frac{x^{2}}{(1+nM_{x})\sigma_{x,r}^{2}/n}\right]}e^{-\frac{1}{2}\left[\frac{y^{2}}{(1+nM_{y})\sigma_{y,r}^{2}/n}\right]}e^{-\frac{1}{2}\left[\frac{z^{2}}{(1+nM_{y})\sigma_{x,r}^{2}/n}\right]}e^{-\frac{1}{2}\left[\frac{y^{2}}{(1+nM_{y})\sigma_{y,r}^{2}/n}\right]}e^{-\frac{1}{2}\left[\frac{z^{2}}{(1+nM_{y})\sigma_{x,r}^{2}/n}\right]}e^{-\frac{1}{2}\left[\frac{z^{2}}{(1+nM_{y})\sigma_{x,r}^{2}/n}\right]}e^{-\frac{1}{2}\left[\frac{z^{2}}{(1+nM_{y})\sigma_{x,r}^{2}/n}\right]}e^{-\frac{1}{2}\left[\frac{z^{2}}{(1+nM_{y})\sigma_{x,r}^{2}/n}\right]}e^{-\frac{1}{2}\left[\frac{z^{2}}{(1+nM_{y})\sigma_{x,r}^{2}/n}\right]}e^{-\frac{1}{2}\left[\frac{z^{2}}{(1+nM_{y})\sigma_{x,r}^{2}/n}\right]}e^{-\frac{1}{2}\left[\frac{z^{2}}{(1+nM_{y})\sigma_{x,r}^{2}/n}\right]}e^{-\frac{1}{2}\left[\frac{z^{2}}{(1+nM_{y})\sigma_{x,r}^{2}/n}\right]}e^{-\frac{1}{2}\left[\frac{z^{2}}{(1+nM_{y})\sigma_{x,r}^{2}/n}\right]}e^{-\frac{1}{2}\left[\frac{z^{2}}{(1+nM_{y})\sigma_{x,r}^{2}/n}\right]}e^{-\frac{1}{2}\left[\frac{z^{2}}{(1+nM_{y})\sigma_{x,r}^{2}/n}\right]}e^{-\frac{1}{2}\left[\frac{z^{2}}{(1+nM_{y})\sigma_{x,r}^{2}/n}\right]}e^{-\frac{1}{2}\left[\frac{z^{2}}{(1+nM_{y})\sigma_{x,r}^{2}/n}\right]}e^{-\frac{1}{2}\left[\frac{z^{2}}{(1+nM_{y})\sigma_{x,r}^{2}/n}\right]}e^{-\frac{1}{2}\left[\frac{z^{2}}{(1+nM_{y})\sigma_{x,r}^{2}/n}\right]}e^{-\frac{1}{2}\left[\frac{z^{2}}{(1+nM_{y})\sigma_{x,r}^{2}/n}\right]}e^{-\frac{1}{2}\left[\frac{z^{2}}{(1+nM_{y})\sigma_{x,r}^{2}/n}\right]}e^{-\frac{1}{2}\left[\frac{z^{2}}{(1+nM_{y})\sigma_{x,r}^{2}/n}\right]}e^{-\frac{1}{2}\left[\frac{z^{2}}{(1+nM_{y})\sigma_{x,r}^{2}/n}\right]}e^{-\frac{1}{2}\left[\frac{z^{2}}{(1+nM_{y})\sigma_{x,r}^{2}/n}\right]}e^{-\frac{1}{2}\left[\frac{z^{2}}{(1+nM_{y})\sigma_{x,r}^{2}/n}\right]}e^{-\frac{1}{2}\left[\frac{z^{2}}{(1+nM_{y})\sigma_{x,r}^{2}/n}\right]}e^{-\frac{1}{2}\left[\frac{z^{2}}{(1+nM_{y})\sigma_{x,r}^{2}/n}\right]}e^{-\frac{1}{2}\left[\frac{z^{2}}{(1+nM_{y})\sigma_{x,r}^{2}/n}\right]}e^{-\frac{1}{2}\left[\frac{z^{2}}{(1+nM_{y})\sigma_{x,r}^{2}/n}\right]}e^{-\frac{1}{2}\left[\frac{z^{2}}{(1+nM_{y})\sigma_{x,r}^{2}/n}\right]}e^{-\frac{1}{2}\left[\frac{z^{2}}{(1+nM_{y})\sigma_{x,r}^{2}/n}\right]}e^{-\frac{1}{2}\left[\frac{z^{2}}{(1+nM_{y})\sigma_{x,r}^{2}/n}\right]}e^{-\frac{1}{2}\left[\frac{z^{2}}{(1+nM_{y})\sigma_{x,r}^{2}/n}\right]}e^{-\frac{1}{2}\left[\frac{z^{2}}{(1+nM_{y})\sigma_{x,r}^{2}/n}\right]}e^{-\frac{1}{2}\left[\frac{z^{2}}{(1+nM_{y})\sigma_{x,r}^{2}/n}\right]}e^{-\frac{1}{2}\left[\frac{z^{2}}{(1+nM_{y})\sigma_{x,r}^{2}/n}\right]}e^{-\frac{1}{2}\left[\frac{z^{2}}{(1+nM_{y})\sigma_{x,r}^{2}/n}\right]}e^{-\frac{1}{2}\left[\frac{z^{2}}{(1+nM_{y})\sigma_{x,r}^{2}/n}\right]}e^{-\frac{1}{2}\left[\frac{z^{2}}{(1+nM_{y})\sigma_{x,r}^{2}/n}\right]}e^{-$
 - 2 physical parameters

$$A_{i} = \frac{\sigma_{m,i}^{2}}{\sigma_{r,i}^{2}} \quad k = \frac{1}{i_{r}^{2}} = \frac{\overline{c_{r}}^{2}}{\sigma_{Cr}^{2}} \quad \frac{\sigma_{tot,i}^{2}[n]}{\sigma_{tot,i}^{2}} = \frac{\left(1 + nM_{i}\right)}{n\left(1 + M_{i}\right)} \leq 1$$

Experiment design

Atmospheric wind-tunnel (Ecole Centrale de Lyon)

Experimental setup

Instantaneous and mean puff

X

Instantaneous and mean puff

X

Experimental campaigns

- 2 stationary releases campaigns with Hs = 20 mm
- 1 instantaneous releases campaign with Hs = 20 mm
- 1 stationary release campaign with Hs = 50 mm
- 1 instantaneous releases campaign with Hs = 50 mm

R20

R50

Time (s)

Experimental process

- Instantaneous Puff $B_i : C_i (t), T_i, \sigma_i$
- N_{b} different releases => $\langle T_{i} \rangle, \langle \sigma_{i}^{2} \rangle, \sigma_{T_{i}}$
- Mean Puff B_{moy} : $C_{moy}(t)$, $\sigma_{C}(t)$, T_{Bmoy} , σ_{Bmoy}

MM

 T_i, σ_i

 T_{i+1}, σ_{i+1}

Main results

 Averaged time arrival of each release (moy[T(j)]) and time arrival of the mean puff (T_Bmoy); R50

X = 2000 mm ; Z = 60 mm

Main results

 Averaged time arrival of each release (moy[T(j)]) and time arrival of the mean puff (T_Bmoy); R20

Mean results

Mean and relative puff variances, (Var_Bmoy, Var-r = moy[Var(j)]), mass center spread variance (Var_m = Var_t_j.);
R50

X = 2000 mm ; Z = 60 mm

Mean results

Mean and relative puff variances, (Var_Bmoy, Var-r = moy[Var(j)]), mass center spread variance (Var_m = Var_t_j.);
R20

Experimental process

Y transverse direction: C*t (Y) and other moments

•

Main Results

 Gaussian distribution of the time integrated distribution (which same std as the mean puff)

CBmoy_integ (ppm*s) X = 4000 mm Z = 25 mm

19

Experimental process

•

റ

Y transverse direction: C*t (Y) and other moments

20

Mean results

 Y-puff mean spread std for steady and unsteady releases (R20/R50)

Main results

 Comparison of Y-relative spread std longitudinal evolution (R20/R50)

Main results

• Compulsed data for a sensor position (R50, X= 4 m)

Conclusions

- Specific experiment designed for short releases
- Main results :
 - Longitudinal dispersion dominated by relative spread
 - Longitudinal characteristics do not depend on Y
 - Plume and puff mean spreads are equivalent in the transverse direction
 - The methodology allows for the determination of the different physical involved parameters : i and M
- Application :

Perspectives

- Simulations and wind-tunnel experiments of short releases on an idealised district
- Integration of a variability model in operational dispersion models (SIRANERISK)

Thank you for your attention

Experimental results

 2 instantaneous puffs, mean puff, and idealized instantaneous puff (X = 2000 mm, R0)

26

Main Results

 Comparison of X-meandering ratio longitudinal evolution (R20/ R50)

27

Gaussian puff descriptors

Idealized Puff in an uniform flow

Puff deformation in a shear layer

• $\sigma_{r,i} = g(t)$

•
$$\sigma_{m,i} = h(t) p_{m_{3D}}(x_c, y_c, z_c) = \frac{1}{(2\pi)^{3/2} \sigma_{x,m} \sigma_{y,m} \sigma_{z,m}} exp \left(-\frac{1}{2} \frac{z_{m_{3D}}}{\sigma_{x,m}} \right)$$

$$\frac{\mathbf{x}_{c}^{2}}{\sum_{\mathbf{x},\mathbf{m}}^{2}} \exp\left(-\frac{1}{2}\frac{\mathbf{y}_{c}^{2}}{\sigma_{\mathbf{y},\mathbf{m}}^{2}}\right)\exp\left(-\frac{1}{2}\frac{\mathbf{z}_{c}^{2}}{\sigma_{\mathbf{z},\mathbf{x}}^{2}}\right)$$

