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INTRODUCTION 
In the frame of the CAFE programme (Commission of the European Communities, 2001) 
modelling activities, the CityDelta (http://rea.ei.jrc.it/netshare/thunis/citydelta/) open model 
intercomparison exercise has been launched by the JRC-IES (Joint Research Centre – Institute 
for Environment and Sustainability) in collaboration with EMEP, IIASA and EUROTRAC to 
explore the changes in urban air quality (mainly ozone and particulate matter concentrations) 
predicted by different atmospheric chemistry-transport (CTM) dispersion models in response 
to changes in urban and regional emissions. 
 
During the first phase of CityDelta exercise, four Italian groups cooperated in the preparation 
of the input data in order to perform simulations with three different atmospheric chemistry-
transport models: CALGRID (Yamartino, R. J. et al., 1991), an Eulerian three-dimensional 
photochemical model for gas phase simulations. It implements an accurate advection-
diffusion scheme in terrain-following co-ordinates with vertical variable spacing. The 
CALGRID chemical module implements the SAPRC90 (Carter, W.P.L., 1990) and the CB4 
(Gery, M. et al., 1989) mechanisms. The QSSA (Quasy Steady State Approximations) 
algorithm solves the kinetic equations (Hessvedt, E. et al., 1978); STEM-FCM (Silibello, C. et 
al., 2001) an Eulerian three-dimensional photochemical model that implements an accurate 
advection-diffusion scheme in terrain-following coordinates, with vertical variable spacing, 
and can take into account chemical transformations and deposition processes of both gas and 
aerosol species. The model uses SAPRC-90 mechanism (Carter, W.P.L., 1990), including 54 
chemical species and 129 reactions. As for the kinetic equations integration, STEM-FCM 
implements the IEH solver (Sun, P. et al., 1994). Finally aerosol treatment is based on the 
size-resolved multicomponent aerosol module of (Wexler, A.J. et al., 1994); CAMx (Environ 
Corp., 2004), a comprehensive air quality computer modeling system publicly available for 
the integrated assessment of photochemical and particulate air pollution over many scales. 
CAMx provides the option to use two different chemical mechanisms: a) Carbon Bond 4 
version 1999, modified to model for ozone and fine / coarse PM; b) SAPRC version 1999 
(Carter, W.P.L., 2000). In addition CAMx provides two chemistry solver, IEH (Implicit-
Explicit Hybrid) or CMC (developed by ENVIRON and based on an “adaptive-hybrid” 
approach). For the first phase of CityDelta SAPRC99 chemical mechanism and CMC solver 
were used. 
 
The photochemical models have been applied over the Milan area defined in the frame of 
CityDelta intercomparison (300 x 300 km2, Figure 1). The simulations concerned the 1999 six 
summery months (from April to September). 
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Figure 1. The CityDelta Milan domain. Air quality monitoring stations selected for model 
validation are also shown. 
 
THE MODELS SENSITIVITY ANALYSIS 
To better evaluate models reliability and cleverness in simulating the long-term dynamics of 
pollutants in the atmosphere, a comprehensive sensitivity analysis with regard to both model 
configuration and input data has been carried out. Models have been driven by same input 
fields, and in particular: 

 the emissions over all the domain were provided by EMEP and JRC; 
 the boundary concentrations were provided in the frame of CityDelta by EMEP; 
 for the main meteorological fields (wind speed and direction, temperature, turbulence 

parameters) CALMET diagnostic model (Scire, J.S. et al., 2000) was applied, whereas 
some other meteorological fields requested by CAMx (i.e. pressure, water vapour 
content, cloudiness, rain) were derived by Aladin data, provided in the frame of 
CityDelta by Météo France (http://www.meteo.fr/meteonet/). 

 
Comparing model outputs obtained with the same input fields and the same configuration (in 
terms of horizontal and vertical resolution, for example) has allowed to highlight differences 
only due to models response. In particular, three main aspects were investigated: a) horizontal 
grid resolution, b) meteorology fields and c) chemical mechanisms and integrators. This work 
deals with the first one: the influence of horizontal grid resolution 
 
GRID RESOLUTION INFLUENCE 
Analysis of the horizontal grid resolution influence (varying from 5 to 10 km) represents one 
of the main issues of CityDelta project and has been addressed both to Base Case and to 
hypothesised future scenarios. 
 
The results obtained with the three models for the different scenarios were evaluated by 
means of a statistical tool provided by JRC. Several statistical parameters were taken into 
account, all based on the ozone and NO2 six months hourly concentrations. The evaluation 
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was performed in relation to nine geographical points selected by JRC and corresponding to 
the air quality monitoring stations concerning the base case (validation) and to ‘significant’ 
locations concerning the future scenarios. 
 

 
Figure 2. Six months mean ozone concentrations of CAMx 10 km (07), STEM 10 km (19), 
STEM 5 km (20) ,CALGRID 5 km (22), CAMx 5 km (23), CALGRID 10 km (38) for some 
monitoring stations. Observations are shown as first column. 
 
The analysis demonstrates that ozone concentrations seem quite insensitive to grid resolution 
as for mean statistical parameters. For example, Figure 2 shows the mean ozone 
concentrations over the summery months for six monitoring stations. As we can see the 
results of the same model are comparable in relation to the two grid resolutions, even if some 
differences can be found at Limito station. Similar conclusions can be drawn for other mean 
parameters like correlation coefficient and BIAS. For some models, on the contrary, extreme 
values statistics can be more sensible to horizontal resolution. For example, exceedance days 
of 60 (ppb) threshold for 8 hourly ozone concentration can vary up to 15-20 % (Figure 3). 
Similar results can observed also for hourly exceedances or AOTx. 
 
Concerning the nitrogen dioxide, concentrations seem to be more sensitive than ozone to the 
grid spatial resolution, as they are more linked to emissions. In Figure 4, for example, the NO2 
mean concentrations over six months differ in relation to the grid horizontal resolution, 
particularly near the urban area (station n. 3, Limito). Moreover NO2 variations are coherent 
with the corresponding modifications in ozone concentrations, even in an opposite sense. 
Finally, observed behaviours seem to be coherent among base case and hypothesised future 
scenarios. 
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Figure 3. Exceedance days of the 60 (ppb) threshold for 8 hourly mean ozone concentration. 

 

 
Figure 4. Six months mean NO2 concentrations. 
 
CONCLUSIONS 
Performed analysis suggest that varying horizontal grid resolution from 5 to 10 km doesn’t 
induce significant variations in ozone models performance (maybe except for the exceedance 
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parameters), while could be in some ways more critical with regard to NO2. In any case, 
observed variations don’t put in evidence a clear worsening in model performances due to a 
reduction of spatial resolution. Generally nitrogen dioxide seems to be more sensitive, 
suggesting that grid resolution could be more influent on emission reconstruction than on 
transport or chemical transformations. On the other hand, increasing grid step reduces 
computational resources requirement, that represents an important issue in regulatory context. 
Consequently, modifying spatial resolution can represent a rational decision on condition that 
full model sensitivity has carried out taking into account different chemical species and 
performance indicators, in order to correctly set grid configuration. 
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