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INTRODUCTION 
In October 1994, the inert, environmentally safe, tracer gas perfluoro-methyl-cyclohexane 
(PMCH) was released over a 12-hour period from a location in northwestern France and 
tracked at 168 sampling locations in 17 countries across Europe – hundreds of kilometers 
(Graziani et al., 1998).  This release, known as the European Tracer Experiment (ETEX), 
resulted in the collection of a wealth of data.  IDA has obtained from the Joint Research 
Centre, European Commission 46 sets of transport and dispersion predictions associated with 
models from 17 countries as well as the observed PMCH sampling data associated with the 
October 1994 ETEX release (Mosca et al., 1998a). This paper describes the extension of the 
previously developed user-oriented two-dimensional measure of effectiveness (MOE) 
methodology (Warner et al., 2001) to evaluate the predictions of these 46 models against the 
long-range ETEX observations. 
 
MEASURE OF EFFECTIVENESS (MOE) 
A fundamental feature of any comparison of hazard prediction model output to observations 
is the overlap, over-, and under-prediction regions.  We define false negative region where 
hazard is observed but not predicted and false positive region where hazard is predicted but 
not observed.  Numerical values associated with estimates of the false negative region (AFN), 
the false positive region (AFP), and the overlap region (AOV) characterize this conceptual view 
(Figure 1). 
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Figure 1.  Conceptual View of 3 Comparative Dimensions 
 
The MOE that we consider is two-dimensional (2D).  The x-axis corresponds to the ratio of 
overlap area to observed area and the y-axis corresponds to the ratio of overlap area to 
predicted area.  These mathematical definitions can be algebraically rearranged and we then 
recognize that the x-axis corresponds to 1 minus the false negative fraction and the y-axis 
corresponds to 1 minus the false positive fraction. 
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where APR = region of the prediction and AOB = region of the observation.  Importantly, this 
MOE considers the direction of the plume or location of the hazard when evaluating via 
“scoring” functions a model’s performance.  The various regions described above can be 
estimated from field trial observations as previously described (Warner et al., 2004). 
 
“SCORING FUNCTIONS”  
In this section we describe several notional scoring functions for the MOE space.  Essentially, 
these scoring functions can be thought of as corresponding to the requirements of different 
possible model users.  Such scoring functions can thus aid us in assessing if a model’s MOE 
value, for a given set of field observations, is “good enough.”  In developing the MOE scoring 
functions, this section also describes and illustrates the mathematical relationships between 
the figure of merit in space, fractional bias, and a measure of scatter between observations and 
predictions.  An objective scoring function associated with the 2D-MOE space is to consider 
the values closest to (1,1) as the best.  This approach considers false negative and false 
positive fractions as equally undesirable.  For such an objective scoring function (OSF) we 
define the “distance” to (1,1) – dOSF as  
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Then, for different MOE values, OSF favors the smallest value of dOSF.  Next, the Figure of 
Merit in Space (FMS) is defined as the ratio of the intersection of the observed and predicted 
areas to the union of the observed and predicted areas at a fixed time and above a defined 
threshold concentration (Mosca et al., 1998b).  FMS is related to x and y components of the  
MOE as shown in the following equation:    

     
xyyx

xyFMS
−+

= .             (3)  

 
A value of FMS = 1 implies complete overlap. Some users of hazardous material transport 
and dispersion models might consider false positives and false negatives quite differently.  
For many applications, false positives would be much more acceptable to the user than false 
negatives (which could result in decisions that directly lead to death or injury).  Equation 4 is 
an example of a user scoring function that takes the above risk tolerance into consideration.  
We refer to this notional user scoring function as the Risk-Weighted FMS (RWFMS): 
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where CFN, CFP > 0.  Basically, this equation describes a modified FMS that includes 
coefficients, CFN and CFP, to weight the false negative and false positive regions, respectively.  
A hazardous material transport and prediction model might be applied to problems for which 
the actual location of the hazard or direction of the plume is of no particular importance.  For 
example, such a model might be used to study potential future outcomes of an accidental or 
intentional release.  In these cases, the actual weather (e.g., wind speed and direction) of the 
far future associated with the planning cannot be known with any certainty.  For these 
applications it is desirable to have a scoring function that simply compares the sizes of the 
predicted and observed areas.  In essence, model users in these cases would want a model that 
minimizes the overall model bias.  Fractional bias (FB) has been used to evaluate transport 
and dispersion models under such circumstances and can also be related to the MOE: 
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A scoring function that minimizes the absolute value of FB favors model predictions that lead 
to the least average bias – i.e., just the right amount of material or size of the hazard region.
  
Quite often, measures such as mean square error or normalized mean square error are used to 
characterize the differences between observed and predicted quantities – the scatter if you 
will.  It is desirable to have a measure of scatter that can be mathematically related to the 
MOE space.  For this purpose we define a specialized version of a measure of scatter – 
normalized absolute difference (NAD) – between observations and predictions: 
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where n = number of data points used in the comparisons and )(i

oC  refers to the ith observed 
concentration, and similarly, )(i

pC  refers to the ith predicted concentration.  NAD can be 
expressed in terms of the false negative, false positive and overlap and, after substitution and 
algebraic simplification, NAD is related the summed concentration-based MOE components 
as  
 

follows:     
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A strictly monotonic relationship between NAD and FMS implies that scoring model 
predictive performance based on NAD or FMS will necessarily lead to identical rank 
orderings (Warner et al., 2003).  For both NAD and FB, the mathematical relationships with 
the summed concentration-based MOE can be generalized to the threshold-based MOE. 
 
EXAMPLE COMPARATIVE RESULTS 
Figure 2 presents MOE values for the 46 models when a threshold of 0.1 ng m-3 is applied.  
The model numbers shown in Figure 2 correspond to the Atmospheric Transport Model 
Evaluation Study (ATMES) II predictions that have been previously described (Mosca et al., 
1998a).  The numbers in Figure 2 correspond to the model number with the unbolded labels 
referring to the “100 series” (e.g., the unbolded “12” implies model 112) and the bolded labels 
referring to the “200 series” (e.g., the bold “8” implies model 208).  The 100 series models 
(101-135) used European Centre for Medium Range Weather Forecasts (ECMWF) analyzed 
meteorological data as input and the 200 series (201-214) used weather inputs selected by the 
modeler.  
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Figure 2.  3-Hour Average Concentration Threshold-Based MOE (0.1 ng m-3) Values for 46 
ATMES II Participants.  Unbold Labels Refer to Series 100 Models (e.g., “19” implies model 
119) and Bold Labels Refer to Series 200 Models (e.g., “13” implies model 213). 
 
Forty models led to MOE values within the (arbitrary) circular region highlighted in Figure 2 
and the predictions of seven models led to MOE values outside this region (117, 129, 130, 
132, 206, 212, and 214).  An MOE value on the diagonal (the dashed light purple line) 
implies equal sizes of the observed and predicted regions – although not necessarily 
collocation.  Twenty-seven of 46 MOE values lie below the diagonal, indicating over-
prediction with respect to the number of locations with 3-hour average concentrations above 
0.1 ng m-3.  MOE values were also computed at thresholds of 0.01 and 0.5 ng m-3 and for total 
summed concentrations (Warner et al., 2003).  Table 1 identifies the top ranked model 
predictions as judged by the OSF as well as the rankings (out of 46) of the Second-Order 
Closure Integrated Puff (SCIPUFF) and Atmospheric Release Advisory Center (ARAC) 
models, two models in which our sponsor had a particular interest.  Rankings are identified 
for the three threshold-based and summed concentration-based MOE values.  No single model 
dominated the top ranking.  Complete rankings can be found in Warner et al., 2003.  The 
rankings described in this paper result from consideration of a single release and general 
inference about which model is “best” or ranked highest is not appropriate.  Rather, these 
rankings describe performance in terms of this specific release only.  In addition, for this 
single release field experiment, no direct measures of uncertainty associated with the 
computed MOE values or model rankings were readily available.  However, variations in 
MOE values as a function of time after the release and sensitivities of the MOE values and 
rankings to the influence of a single sampler location were examined. 
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Table 1.  Top-Ranked Models and Rankings of SCIPUFF and ARAC Based on MOE Values 
and the Objective Scoring Function. 

Rank 0.01 ng m-3 0.1 ng m-3 0.5 ng m-3 Summed 
Concentration 

1 
Canadian 

Meteorological 
Centre (202) 

Swedish 
Meteorological 

and 
Hydrological 
Office (208) 

ARAC 
(127) 

German 
Weather 

Service (107) 

Model 0.01 ng m-3 0.1 ng m-3 0.5 ng m-3 Summed 
Concentration 

SCIPUFF (121) 24 30 23 41 
ARAC (127) 4 5 1 33 

 
Past analysis has suggested that assessments of model performance could be sensitive to the 
results associated with a single sampling location – in particular, the location closest to the 
release where the concentrations would be highest.  The sensitivity of MOE values to this 
phenomenon was examined by re-computing MOE values after the removal of a single 
sampling location.  Each of the 168 sampling locations was removed (one at a time) 
generating 168 additional MOE values.  For the MOE values based on summed 
concentrations (but not threshold exceedance), there was indeed a sensitivity associated with 
the sampling location closest to the release – at Rennes, France.  While most of the models’ 
MOE values were relatively unaffected by the removal of this location, a few were perhaps, 
overly influenced by this single sampler location.  The two models of particular interest here, 
SCIPUFF and ARAC, were two of about 8 (of 46) model predictions that resulted in MOE 
values that were significantly influenced by the removal of the sampler location at Rennes.  
With the exclusion of the sampler location at Rennes, the OSF-based model rankings 
(summed concentration) for SCIPUFF and ARAC changed from 41 and 33 (Table 1) to 34 
and 8, respectively. 
 
Finally, variation in model predictive performance as a function of time, as judged by the 
MOE, was examined.  Portions of the ETEX sampling network were monitored out to 90 
hours after the release.  Three-hour average concentrations (predictions and observations) 
were compared for 30 time periods and 12-hour running time window (i.e., 4 time periods in 
sequence combined) and 24-hour running time window (i.e., 8 time periods in sequence 
combined) MOE values were also computed.  When judging model predictive performance 
using the MOE based on the 0.01 or 0.1 ng m-3 thresholds, one of two time-dependent 
behaviors was typically observed.  For some models, an initial under-prediction of the number 
of locations that exceed the threshold is followed by a “correction” that leads to about the 
right number of locations predicted above the threshold, followed finally, by degradation that 
suggests a general missing of the locations at which the threshold is exceeded at the longest 
times (and distances).  For other models, an initial over-prediction of the number of locations 
that exceed the threshold is followed by a “correction” that leads to about the right number of 
locations predicted above the threshold, followed again, by degradation that suggests a 
general missing of the locations at which the threshold is exceeded.  SCIPUFF and ARAC 
both show this degradation (as judged by the 0.01 or 0.1 ng m-3 threshold-based MOE) at the 
longest times after the release, as do most of the examined transport and dispersion models. 
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FOLLOW-ON STUDY 
This analysis has served as a base upon which to build future studies involving ETEX.  First, 
MOE values based on actual areas (e.g., square kilometers) will be created.  An important part 
of this follow-on effort will be to explore and understand potential sensitivities associated 
with interpolation given the underlying non-uniform sampler space across Europe.  Given 
area-based MOE values, one can then include European population distributions and notional 
effects-levels of interest to place the MOE in its ultimate context – fraction of the population 
falsely warned and fraction of the population inadvertently exposed. 
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