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INTRODUCTION 
Within the U. S. Department of Defense, interest in understanding transport and dispersion in 
an urban environment stems from the need to reliably estimate the population effects resulting 
from releases of chemical or biological agents.  Such estimates require knowledge of the 
concentrations of dispersed material as a function of time and location.  The Defense Threat 
Reduction Agency (DTRA) has begun to augment their current Hazardous Prediction and 
Assessment Capability (HPAC – DTRA 2001) to include urban effects.  In response to this 
difficult challenge, field studies in which tracer gases are released within an urban 
environment have been conducted to study flow and dispersion.  In this study, we compare 
the predictions of Urban HPAC to the observations of the Urban 2000 field trial. 
 
BRIEF DESCRIPTION OF URBAN 2000 
A series of sulfur hexafluoride (SF6) releases were carried out in the Salt Lake City area in 
October 2000 – referred to as “Urban 2000” (Allwine et al., 2002).  Meteorological and tracer 
measurements were conducted throughout the Salt Lake City urban region with an outermost 
arc of SF6 samplers located 6 km downwind of the release.  For each of six intensive 
operating periods (IOPs), 3 separate short-duration SF6 releases were monitored for two 
hours.  For each of these 18 separate 2-hour monitoring periods, this study considers the SF6 
samples that were collected at 30-minute intervals at 66 ground locations.  Therefore, one can 
consider 72 (18 × 4) 30-minute average concentrations × 66 locations, or 4752 (30-minute 
average) concentrations, for “paired in space and time” comparisons to the predictions of a 
given model. 
 
BRIEF DESCRIPTION OF URBAN HPAC 
HPAC is composed of a suite of software modules that can generate source terms for 
hazardous releases, retrieve and prepare meteorological information for use in a prediction, 
model the transport and dispersion of the hazardous release over time, and plot and report the 
results of these calculations.  By using HPAC to provide predictions in an urban environment, 
one can conveniently capture some of the effects of the urban canopy on transport and 
dispersion by setting the surface type to “urban.”  In addition to this baseline Urban HPAC 
predictive capability described above, Urban HPAC offers an urban dispersion model (UDM) 
and an urban windfield module (UWM) either or both of which can be invoked.  In order to 
use UDM and UWM, Urban HPAC provides a building database that provides the locations, 
planar geometries, and heights of buildings to support the calculation of flows in the urban 
regime. The U. K.’s Defense Science and Technology Laboratory developed the UDM 
component of Urban HPAC (Hall et al., 2002).  The UWM predicts steady-sate winds inside 
the urban boundary layer using a canopy parameterization (Lim et al., 2002). 
 
PREDICTIONS CONSIDERED 
Four types of Urban HPAC predictions were examined: HPAC with surface type entered as 
“urban,” denoted baseline or “UC” (for urban canopy); HPAC with the UDM toggled on, 
denoted “DM”; HPAC with the UWM toggled on, denoted “WM”; and HPAC with both the 
UDM and the UWM toggled on, denoted “DW.”  For each model type, 5 weather input 
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options were examined: surface measurements from the Salt Lake City airport located about 
10 km from the downtown area (SLC), wind profile measurements from the Raging Waters 
site located 5 km upwind of the release (RGW), measurements from the top of the Latter Day 
Saints’ administration building located within the urban area (LDS), all available 
meteorological measurements (ALL), and an Operational Multiscale Environment Model 
With Grid Adaptivity (Bacon et al., 2000) forecast (OMG).   Therefore, a total of 20 model 
configurations were created – 4 dispersion configurations × 5 meteorological input options.  A 
more detailed description of the preparation of these predictions can be found in Boybeyi et al 
(2003).  
 
PROTOCOL FOR PAIRED IN SPACE AND TIME COMPARISONS 
For this analysis, predictions and observations paired in space and time were compared, 
referred to here as “point-to-point” comparisons.  For each release, 30-minute average 
concentrations in parts per trillion (ppt) – 4 per release – and 2-hour integrated concentrations 
or dosages (ppt min) were examined.  Unlike analyses based on derived quantities (e.g., 
“plume width,” arcmax), this examination explicitly considers the size, shape, and specific 
location (not just the downwind distance) of the cloud.  Therefore, it is expected that the 
ability of the model (to include the input wind field information) to match the wind speeds 
and directions will be of vital importance for a point-to-point analysis.   
The following procedures were followed for these point-to-point comparisons.  First, an 
assumed background value of 3 ppt was added to all predictions (Allwine et al., 2002).  Next, 
observations that were less than 3 ppt were set to 3 ppt – the estimated background.  Some 
values in the distributed set of observations were denoted with a “-999” which indicated that 
they were unusable for any of several reasons.  These observations, and their paired 
predictions, were removed from these comparisons.  No other changes to the observations or 
predictions were made.  The above procedure was applied directly for 30-minute average 
concentration comparisons.  Two-hour dosages were considered valid for comparison only 
when all four 30-minute average concentration observations existed.  For the 30-minute 
average concentration comparisons, 94 percent of all possible observation/prediction pairings 
were included via the above protocol.  Similarly, 81 percent of 2-hour dosage pairings were 
included via this protocol. 
 
NON-PARAMETRIC HYPOTHESIS TESTING FOR DIFFERENCES  
In addition to the previously described user-oriented two-dimensional measure of 
effectiveness (Warner et al., 2001), 13 one-dimensional statistical measures were computed 
for each model configuration.  Confidence intervals were computed for all measures using a 
bootstrap procedure (Warner et al., 2004a).  Definitions for two of the one-dimensional 
measures discussed in this paper – Fractional Bias (FB) and Normalized Absolute Difference 
(NAD) – are given below: 
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where C = observation/prediction of interest (e.g., 30-minute average concentration), Cp 
corresponds to model prediction, Co corresponds to observation, a bar above the quantity 
(e.g.,C ) denotes the average, n = number of data points used in the comparisons, )(i

oC  refers 
to the ith observed concentration (or dosage), and similarly, )(i

pC  refers to the ith predicted 
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concentration (or dosage).  A perfect prediction will have a two-dimensional user-oriented 
MOE score of (1,1), no scatter (NAD = 0), and no average bias (i.e., FB = 0). 
Given the very large set of comparisons generated from the above (over 25,000 were 
examined, Warner et al., 2004b), an objective way for logically identifying statistically 
significant differences between sets of model predictions was needed.  We computed p-values 
for the hypothesis testing of differences between estimated metrics associated with different 
model configurations.  Significant differences between models were sought by comparing the 
statistic of interest for two models (at a time) for each of the 18 releases.  The statistic of 
interest, for example, FB, is paired by release (e.g., IOP 4, Release 4) for each prediction set.  
For the one-dimensional metrics, the Permutation test with general scores (Cytel, 1998) – a 
non-parametric test similar to the Sign and Wilcoxon Signed-Rank tests (Sprent, 1998) – was 
used to compute p-values.  For suitably low p-values, one can reject the null hypothesis of 
equivalence between the values being compared (Daniel, 1997 and Sprent and Smeeton, 
2001).  The Permutation test uses the absolute magnitude of the paired differences and is 
generally more powerful than the Wilcoxon Signed-Rank test, which only uses the rankings 
of the paired data.  Figure 1 illustrates the value of the above hypothesis testing procedure for 
detecting significant differences.  The point estimates and 0.95 approximate confidence 
intervals for FB are shown in Fig. 1a for the four model configurations that used the ALL 
weather input option.  With respect to FB, variations between model performances can be 
seen in Fig. 1a but the statistical significance of these differences is not readily apparent.  
Next, Fig. 1b shows the estimated mean FB difference for the six comparisons that result from 
the consideration of the four model configurations.  Now, if two sets of predictions with 
similar FB performance are compared, one expects the mean FB difference to be zero.  In 
fact, one of these mean differences (“DM-DW”) straddles zero, given its 0.95 confidence 
interval.  But it is also clear that for some of these comparisons, the mean FB difference is 
different from zero and a more formal test reveals a quantitative result associated with that 
difference – the p-value.  For the example shown in Fig. 1b, the p-values strongly suggest that 
the differences in FB that involve comparisons to the WM model configuration are 
statistically significant and that the WM_ALL predictions led to larger (“worse”) FB values 
relative to the DM_ALL, UC_ALL, and DW_ALL predictions. 
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Figure 1. a) FB values for the four dispersion model configurations using the ALL weather 
input option.  These values are based on model predictions of 30-minute average 
concentrations.  b) Mean FB differences for the six model configuration comparisons. 
 
For the two-dimensional MOE, the chosen hypothesis test procedure starts by computing 
vector differences between various paired (by release) model predictions.  If two sets of 
model predictions were identical, then the 18 vector differences would be (0,0).  For this 
study, the null hypothesis is that the two models being compared are equivalent.  Under this 
hypothesis, any MOE vector difference is expected to be equally likely to reside in any of the 
four quadrants, defined as positive x, positive y (++); positive x, negative y (+-); negative x, 
positive y (-+); and negative x, negative y (--).  Given this null hypothesis, one tests how 
unlikely the observed result is by simulating the appropriate permutations.  For example, 
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consider a comparison of predictions of model A and model B (“A-B”) for the 18 separate 
and independent releases of Urban 2000.  If 10 of 18 differences were found in the ++ 
quadrant, the implication would be that model A led to an improved MOE value (closer to 
(1,1)) relative to model B and with a computed p-value of 0.0216.  For the following 
discussions, 0.0216 is the level of significance assumed for statistically based statements.  The 
2-dimensional, 4-quadrant hypothesis test described here is a natural extension of the one-
dimensional Sign test.  
 
EXAMPLE RESULTS: COMPARISONS OF MODEL CONFIGURATIONS 
Based on examinations of the MOE and statistical measures of scatter, it was found that the 
“best” predictions were, in general, associated with the Urban HPAC model that included 
UDM (“DM”) and the specific UC_OMG configuration.  The words “best” and “better” as 
used in this discussion of comparative model configuration performance are based on the 
finding of less scatter and/or an MOE value closer to the perfect value of (1,1).  Similarly, the 
words “worst” and “worse” imply more scatter and/or an MOE value further from the perfect 
value of (1,1).  These findings relate only to these Urban HPAC predictions of a single field 
experiment – Urban 2000.  The predictions that included only changing the surface type to 
“urban” – that is, “baseline” Urban HPAC – or included only UWM typically performed 
worst (again with the exception of the UC_OMG configuration).  In general, there were no 
significant improvements due to including UWM with UDM relative to using UDM alone.  
For the exceptional case in which the OMG weather input option was used, the baseline 
Urban HPAC predictions that did not include UDM and UWM were best.  These predictions 
were especially unusual for these Urban HPAC predictions of Urban 2000 in that they were 
relatively unbiased (that is, they were neither over- nor under-predictions) whereas the other 
19 sets of predictions had FB values implying over-prediction.  This particular UC_OMG-
related finding may be the result of counteracting effects or compensating errors.  Further 
investigation is required. 
Figure 2 illustrates the above findings by providing a relative ranking of model performance 
based on quantitative statistical testing of predictions (based on all sampler locations).  For 
each weather input option, the 6 comparisons that result from the four model configurations 
(UC, DM, WM, and DW) were examined using the previously defined hypothesis test 
procedures.  If a comparison of two sets of predictions led to a p-value ≤ 0.0216 for either the 
MOE or NAD and for either the 30-minute average concentration or 2-hour dosage 
predictions, then the better performing model configuration is ranked above the worse 
performing configuration in Fig. 1.  For four of the five weather input options (SLC, RGW, 
LDS, and ALL), the DM predictions were ranked best or tied for best and the UC predictions 
were ranked worst or tied for worst.  For the predictions run with the OMG weather input 
option, the exceptional result is that the UC_OMG configuration is ranked as best. 

Figure 2. Rankings of Urban HPAC dispersion model configuration performance as measured by 
the MOE and NAD.  For the ALL weather input option comparisons, the WM predictions could 
be ranked as below DM, above UC, and not statistically different from DW. 
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This study also revealed results associated with model performance as a function of time 
integration (30-minute versus 2-hour averages), model performance as a function of 
downwind distance, model performance when used to predict hazard locations (vice actual 
amounts of material), and the relative performance of the five weather input options that were 
examined.  
 
CONCLUSIONS 
An inclusive, paired in space and time – point-to-point – comparative protocol and 
quantitative hypothesis testing were used to compare the predictions of the Urban 2000 field 
experiment by 20 Urban HPAC model configurations.  Robust findings were reported that 
included the statistical discernment of differences between configurations and general trends 
of Urban HPAC predictions of Urban 2000.  
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