PR- PLPM (Plume Rise Photochemical Lagrangian Particle Model): Formulation and validation of the new plume rise scheme

V. Sachero*, L. Vitali**, F. Monforti**, G.Zanini**

* DISCO – Università degli Studi di Milano Bicocca, Milano, Italy
 ** ENEA Bologna, PROT-INN section

Density reconstruction

Density reconstruction – Box Counting

Density reconstruction – Box Counting

Density reconstruction - Kernel

Particles mass is distributed in space by means of a kernel function

$$c(x, y, z, t) = \sum_{i=1}^{n} \frac{m_i}{\lambda_x \lambda_y \lambda_z} K\left(\left|\frac{x_i - x}{\lambda_x}\right|\right) K\left(\left|\frac{y_i - y}{\lambda_y}\right|\right) K\left(\left|\frac{z_i - z}{\lambda_z}\right|\right)$$

$$K(x) = 0.75(1 - x^2) \quad \text{if } |x| < 1$$

$$K(x) = 0 \quad \text{otherwise}$$
Bandwidths are crucial for density estimation

1

Limits of PLPM (Harmo 8)

• Plume rise empirical model (Briggs Formulae):

$$\Delta H(x) = const \cdot F_b^{\ \alpha} \overline{u}^{(-\beta)} x^{\gamma} | \qquad F_b = f(u_p, T_p, T_a, d)$$

• Worse performances when T_p increases (underestimation of the ground concentration values)

The plume rise effect is ruled by:

- •**Buoyancy** force due to hot pollutant emitted $(T_p > T_a) \rightarrow \Delta H$ of plume axis
- •Entrainment of air mass at lower temperature ($T_p \rightarrow T_a$ in a finite time)
- •Spread of the plume due to internal turbulence
- •Wind transport ($Up \rightarrow Ua$)

The new PR-PLPM model

- Implementation of the Ooms plume rise model
 - Eulerian ODE conservation system (Ooms 1972, Ooms and Mahieu 1981, Robins et Al. 1999):

•
$$\frac{d}{ds} \begin{pmatrix} F_m \\ F_{Mx} \\ F_{My} \\ F_{Mz} \\ F_h \end{pmatrix} = \begin{pmatrix} E_m \\ -F_m (du_a/ds) - D_x \\ -F_m (dv_a/ds) - D_y \\ -F_m (dw_a/ds) + B - D_z \\ -F_m c_p (d\theta_a/ds) \end{pmatrix}$$
•
$$P_i = \rho_i \cdot RT_i$$
$$i = a, p$$

Mass, momentum and enthalpy conservation equations referred to a plume control volume; perfect gas law

Integration within PLPM

- Introduction of the concept of the *plume-particle*
- New expression of the particle trajectory (Webster and Thomson, 2002):

Results: height of the centre of mass

Results: Density Reconstruction (PL3) rerer Ground concentration maps: comparison with measured data PR-PLPM Kincaid 09 5 1980 h 13.00 PR-PLPM h 10.00 KITCI <0.001 ug/m-3 <0.001 ug/m-3 4400000 4400000 [0.001~0.005]ug/m1 [0.001~0.005]ug/m3 0.005-0.01]ug/m3 [0.005-0.01]ug/m3 0.01-0.05]ug/m*3 0.01-0.05]ug/m*3 0.05-0.1 Jug/m*3 0.05-0.1]ug/m*3 [0.1-0.5]ug/m-3 [0.1-0.5]ug/m3 [0.5-1.0]ug/m-3 [0.5-1.0]ug/m3 ■>1.0 ug/m3 >1.0 ug/m3 4380000 4380000 4360000 4360000 260000 280000 30000 260000 280000 300000 UTM x[m] UTM x[m]

[m]k win

PR-PLPM Validation Results

Q=2,3 N=586	mean [(ng/m³)/(g/s)]	sigma [(ng/m3)/(g/s)]	bias [(ng/m3)/(g/s)]	NMSE	R	FAC2	FB	FS		
MIS	40.96	39.26	0	0	1	1	0	0		
PLPM	23.89	28.96	17.07	2.65	0.036	0.319	0.526	0.302		
PR-PLPM	34.41	42.43	6.55	2.38	0.007	0.332	0.174	-0.077		

Q=3 N=338	mean [(ng/m³)/(g/s)]	sigma [(ng/m3)/(g/s)]	bias [(ng/m3)/(g/s)]	NMSE	R	FAC2	FB	FS
MIS	54.34	40.25	CO 0	0	1	1	0	0
PLPM	22.85	25.18	31.49	2.57	0.029	0.302	0.816	0.461
PR-PLPM	32.02	39.26	22.31	2	0.056	0.361	0.517	0.025

Conclusions and work in progress

- A plume rise scheme enhancing PLPM performance has been implemented and validate on the "classic" Kincaid data set.
- Full inert validation of PLPM on MVK in progress
- Tests are in progress for chemical reactions (box models and active plumes)

Chemical reactions

- Concentrations C_i in particle locations are computed every chemical step.
- Chemical mechanism computes "new" concentrations C'_i
- Particles chemical composition is reassigned proportionally to C'_i/C_i and new mass is added if necessary

Chemical reactions – in progress tests

- Dynamic time step and chemical time step.
- Is the kernel best performing in the inert case also the best performing in complex reactions?
- How complex is to use "local" inertia ellipsoid axis as kernel axis?