

Validation of the local-scale atmospheric dispersion model CEDRAT on ground level 85-Kr measurement campaigns over Cap de La Hague

RENNESSON Malvina Environmental Engineer, COGEMA

MARO Denis

esearch Engineer, IRSN

, FITAMANT M-L, DEVIN P, PRIAN E

COGEMA & SGN

HARMO9

Garmisch-Partenkirchen, 1st- 4rd June 2004

- 1. Background
- 2. Model description: CEDRAT principles & specificities

nterence

- 3. Experimental campaigns description
- 4. Model and experiment comparison results
- 5. Conclusion & future prospects

zarmist

1. Background

La Hague reprocessing plant location

 La Hague, Cotentin peninsula, France
(Reprocessing of nuclear used fuel)

> Atmospheric radioactive releases 3 main stacks: height of 100 m

1. Background

Radiological impact assessment for routine releases

Goals

- Ensure respect of the regulatory requirements and go further
 - Gas and aerosols concentrations at any time or place
 - Impact for a predicted and/or carried out release program

Improve the environmental monitoring program

Recommendations from the North-Cotentin Radioecological Group on the impact of the local nuclear facilities

Lack of accuracy within a <u>short distance</u> and for <u>low speed winds</u> (weak diffusion) of gaussian approximation

Need for an accurate and operational atmospheric dispersion model

1. Background

IRSN and COGEMA collaboration

IRSN skills to answer COGEMA's concerns annual research contract

- Research axis : Micrometeorology (better description of local atmospheric stability conditions), dry deposition for aerosols, marine dispersion...
- Experimental campaigns
 - Altitudes data: tethered balloons [2000 2001]
 - Ground data [2001-2002] for Krypton, aerosols (in progress)
 - Marine campaigns

Modelling : hydrodynamic model for marine discharges

Shared interests:

Carry out the best available technologies;

Enlarge knowledge on dispersion modelling

2. Model

CEDRAT 2.0.0

Needs

- 1. Accuracy (with respect to gaussian models)
- 2. Rapid computation
- 3. Simplicity of use for on site operational conditions
- 2 working modes

Release scenarios

Computation time: 20 min to 1h30

Statistical scheme over a definite time period for an average concentration assessment

Help: wind field pre-processed data base

No pre-existing model answering these requirements

2. Model

How to obtain accuracy ?

Navier-Stokes equations under Boussinesq approximation solved by Finite Elements Method through a freeware fluid mechanics solver developed by Paris 6 University (FreeFEM+)

How to gain computation time ?

 '2.5' D modelling: 2D for the flow computation + lateral dispersion through a finite difference scheme in parallel vertical sections

• Eddy viscosity depending only on height (O'Brien, Laiktman, Mc Pherson approx)

- How to answer to operational constraints ?
 - Friendly interface for atmospheric dispersion non-specialists
 - Ex: Automatic correlation between available meteorological data and associated Pasquill class
 - Linux O.S. on a standard PC (maintenance concern)

Importance of the validation process

2. Model

Validation process in two steps

3. Experimental campaigns

4. Comparison results

4. Comparison results

4. Comparison results

5. Conclusion

Fruitful collaboration between industrial managers and scientific experts to be continued

5. Future prospects

How to improve the tool ?

- Improvement of the lateral dispersion modelling scheme (spreading of the cross sections)
- Adaptations for a coherent behaviour with buildings
- Changes in the wind direction for daily simulation
- Better stability characterization using the standard deviation of the wind direction vertical component
- Adaptable tool for different sites

How will IRSN and COGEMA collaboration proceed ?

 Comparison with experiments at higher altitudes with tethered balloons

• Emphasis on extremely stable conditions (night experiments) \approx 15% of the cases found