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Backqround

(1) The development of practical dispersion madel which is able to take
both the terrain and atmospheric stability into account is now
undertaken by Japan Environmental'Management Association for
Industry (JEMALI) in collaboration with Mitsubishi Heavy Industries
(MHI), National Institute of Advanced Industrial Science’and
Technology, Ryoken-tech' LTD. and Kyusyu University.

(2) Our first aim was.to develop practical dispersion model for unstable
conditions, because the unstable conditions causes fumigation and
brings-high ground level concentrations (GLC).



Alm
(1) To develop a numerical dispersion'model for unstable
atmospheric conditions for-regulatory use.
- Easy to use. It means this model is to be developed
as an user=friendly software.
- Short calculation time.
(2) Fo validate the performance of the model.

- Date sets obtained from wind tunnel experiments.

- Date sets from-field observation. (Model Validation Kit)



Numerical dispersion model

- Dispersion model which is applicable to dispersion around
complicated terrain under unstable atmospheric condition.

- Easy to use and short calculation-time.

l

Potential flow model + Lagrangian stochastic dispersion model
( Ohba, Shao 1991)
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Numerical dispersion model

- Lagrangian stochastic dispersion model
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Drift coefficient ai is determined by turbulent properties.
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performance on the concentration
prediction.



Modification of the model to take into account of increase of

turbulent strength behind the hill
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2nd Step : The particle is moved assuming the Gaussian turbulence
which has a standard deviation of vertical velocity o m,

Assumption of the domain and the strength of additional turbulence

Assumption of the domain and the
value of ¢ m was roughly estimated
based on the data from wind tunnel
experiments.



Wind tunnel experiments

(1) Experimental Facilities

- Thermally stratified wind tunnel in theNagasaki Research &
Development Center of Mitsubishi Heavy Industries was used.

—  Working section : 1.7m wide, Im high and 15m long

~Space heating unit:
divided into 10 layers.
Each temp is controlled by
electric heater.
—Continuous
temperature stratification
can be simulated.




Wind tunnel experiments

(2) Measurements

- Wind velocity components — FLV/( Fiver Laser-Velocimater)

» Temperature — Cold wire (Platinum/resistance sensor)

- Sensible heat flux from tunnel floor — Heat flux sensor

 Gas concentration — Hydrocarbon gas analyzer (Tracer gas:methane)

(3) Terrain Model

- Scale = 1/2500

- 3 types of.terrain models
—-Simple hills / Simple-terrain, Simple-terrain Il
— Complicated-terrain



Simple-terrain I, 11

—To obtain the basic characteristics of flow and dispersionfield
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Complicated-terrain
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Wind tunnel experiments

(4) Similarity rule

-‘Bulk Richardson Number :Ri,
g-L-AT
T T.U?
AT :Temperatur e Difference , L :Length Scale
(U :Wind Velocity j

Ri,

Experimental parameters in wind tunnel based on Rib

Field scale Wind tunnel scale
Flow velocity [m/s] 7.9 0.61
Temperature difference [K] 1 15 +—— Assumption:

Temperature scale

Length Scale [m] (= Hm) 200 0.08




(5) Experimental conditions -2 types of flow conditions-
— Inland type CBL/ Zi=2Hm (Zi: CBL height—almost censt

near :source position)

— Coastal type CBL :TIBL-type ( Thermal Internal boundary layer:

Configurations of wind tunnel

Zi grows with distance from coast line.)
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Results - Comparisons of GLC with wind tunnel experiments : Inland type CBL -
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Results - Comparisons of GLC with wind tunnel experiments : Coastal fumigation-
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Results -Comparisons with Kincaid data set

@Field observation in Kincaid (Olsesen, H. R., 1995)

Table 1(1). Conditions of Kincaid field observation

Wind speed Heat flux Height of
Case (m/s) . Convective layer,

(at 100m) Ho (W/m°) Zi(m)

80/7/13 13:00 2.0 364.1 396
14:00 2.0 399.0 554

15:00 1.7 333.3 600
81/5/28 13:00 3.2 307.5 1250
14:00 3.4 276.3 1353

Table 2. Conditions of model calculation for Model Validation Kit

Kincaidfield data : experiment
over flat land. It includes several
data under unstable conditions.

4 tests were chosen and
categorizgt\into 2 groups.
Then@grical simulations
ware done for these two

CASES.

<—Source heights are

Wind speed Heat flux, Heig_ht of Source height,
Case 2 Convective layer,
(m/s) Ho (W/m®) Zi(m) Zs(m)
80/7/13
2.2 350 550 565
13:00, 14:00, 15:00
81/5/28
3.6 300 1250 534
13:00, 14:00

determined by
CONCAWE formula.

Table 1(2). Conditions of Kincaid field observation

AZs=0.175Q%2U~¥*

Case Stack Height Diameter Exit velocity Gas ter?perature
(m) (m) Vg(m/s) 4®)
80/7/13 13:00
14:00 187 9 12 121~124
15:00
81/5/28 13:00 187 9 16.4~16.9 155

14:00




Results - Comparisons with Kincaid data set -
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Comparison of-numerical model with the Model Validation Kit (Kincaid) :
In case of dispersion over flat land, the results of numerical model agree well with the
experiments.



User-friendly software

User-friendly software using GUI (Graphical User Interface) is also.developed based
on the numerical model.

By using GUI, we can easily handle the input and output-data on the windows screens.
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User-friendly software

- The software is able to calculate not only 1-hr.average concentration but also
long-term averaged concentrations.

- The software can predict fumigation phenomena caused by TIBL (Thermal
Internal Boundary Layer) in coastal area.

- The digital maps published by Japan Geographical Survey Institute is
applicable to the software and we can easily handle topographical data.

- AMeDAS (Automated Meteorological Data Acquisition System) data
published by Japan Meteorological Business Support Center is available as
meteorological input data.

- The software will be available in the web-site soon. ( It will be charged.)



Summary

- We developed practical dispersion model for unstable conditions. The model
we adopted was the combination of the potential flowwmodel and Lagrangian

stochastic dispersion model.

- The model was tested using wind tunnel experiments and several field
experiments and proved to have better performances than conventional

plume model.

- Based on the model, the user-friendly software was also developed and this
software will be available in the web-site soon
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