A COMPARISON OF FIELD DATA, NUMERICAL CALCULATIONS AND WIND TUNNEL MEASUREMENTS IN AN URBAN ENVIRONMENT

TNO Environment, Energy and Process Innovation

J.P. Wesseling, P. Builtjes ,G.Th. Visser

TNO

t

NO Netherlands Organisation for Applied Scientific Research •

→ Environmental (Air) Quality Department Kirche

Garmisch

- Field experiments
- Numerical modelling
- Wind tunnel experiments •

Compare results

Rotterdam / Overschie

- Extensive field measurements performed: 2000 present
- Close to busy highway, also further away
- NO_x/NO₂/PM10 (some PM2.5)
- Extensive dispersion calculations
- All relevant traffic parameters are known
- Meteo station at airfield (5 km)

Present aim: perform wind tunnel measurements to compare to field- and numerical data

NC

irche

Data sets

Open field: •

- ference hourly NO_x/NO₂/PM10/... data at 50 & 200 meters •
- Effects of 1 and 2 noise barriers (WT only) •
- Effects additional mixing between noise barriers •
- Effects of trees on 1 side (WT only) •

Urban locatio •

- hourly data at 40 & 200 meters
- 14-day average data at 40 locations
- Effects of building types (WT only)

Carm!

(WT only) artenkirch

Vertical concentration distribution

Comparison of data open field

Effect of noise barrier open field

Overschie

TNO Wind tunnel, Rotterdam, Overschie

erenc

South

Middle

North

12-14 meters high

13

.

m to

Shielding by building

NOx WT data urban environment, 1 year emission & meteo data

Comparing NO₂ contribution, cross wind, yearly averaged

$NOx \rightarrow NO2 \text{ conversion}$

erence TNO uses a very simple empirical relation: •

Garmisch

$$[NO_{2}] = f \cdot [NO_{x}] + \beta [O_{3}]_{background} \frac{[NO_{x}]}{[NO_{x}] + K}$$

The relation was tested by using measured NOx and O3 to ightarrowcalculate NO2 and compare this to experimental data

Test of conversion, open field

ence

Test of conversion, urban environment

HARMO9 2004 20

$NOx \rightarrow NO2$ conversion

- Overall satisfactory results of conversion scheme
- No significant differences inside city / out in open field
- Scheme is very robust, applicable in
 - Yearly average concentrations;
 - Hourly average concentrations;
 - Conversion of NOx measured in wind tunnel;

armis

Conclusions and outlook

- erenci Very satisfactory combination of field, numerical and wind • tunnel data
- **Complete the analyses** ightarrow
- More detailed study of urban dispersion •

Sarmisch

Pollution abatement in Dutch cities •

irche