Numerical modelling of flow and dispersion in Rome area

G. Leuzzi, P. Monti

Dipartimento di Idraulica, Trasporti e Strade – Università di Roma "La Sapienza"

Aims of the study ce

Simulation of the regional circulation during breeze episodes.

- Characterisation of the urban heat island (UHI) of Rome.
- Validation of a meteorological mesoscale model in the neighborhood of Rome.

Evaluation of pollutant dispersion in Rome area, during the interaction between breeze and UHI.

Meteorological Model CSUMM (Colorado State University Mesoscale Model)

Governing equations

- > mass
- momentum (hydrostatic approximation)
- > thermodynamic energy
- > moisture
- turbulent kinetic energy (TKE)

> Boundary conditions

- Zero-gradient lateral b.c. on all prognostic variables
- No-slip condition at the ground surface
- Temperature and moisture are predicted from soil balance equations

Initial conditions

- Vertical profiles of velocity, temperature and moisture in atmosphere
- Vertical profile of soil temperature

Dispersion Model

Statistical Lagrangian model developed by the authors

 Based on the "Well-Mixed Condition"
(Thomson D.J.; J. Fluid. Mech. 1987, 180: 529-556)

Extended to threedimensional flows with non-Gaussian turbulence

(Monti P. and Leuzzi G.; *Bound.-Layer Met.* 1996, 80: 311-331)

 Validated for dispersion around buildings
(Leuzzi G. and Monti P.; Atm. Envir. 1998, 32: 203-214)

Modeling Domaince

Dimensions

- 200x200 Km² in the horizontal plane
- > 9 Km along the vertical

Discretisation

- > 201x201x19 nodes
- > $\Delta x = \Delta y = 1 \text{ Km}$
- $\rightarrow \Delta z$ variable from 2 m to 1 Km $\Delta t=5$ sec

Observational sites

- PM (Ponte Malnome): Mast and Doppler-Sodar station
- PDM (Pratica di Mare): Radiosounding station

Topography

Corine Land Covere

Soil Moisture Availability

Case specification case

Period of simulation: 48 hours (21-22 August)

Synoptic conditions: high leveled pressure

Initial conditions: radiosounding taken at Pratica di Mare station

Nocturnal breezes

simulated wind field at 02:00 LST at 10 m AGL

Diurnal breezes

simulated wind field at 13:00 LST at 10 m AGL

Maps of surface temperature

13:00 LST

Maps of temperature at 6 m AGL

13:00 LST

Urban Heat Island maps of temperature at 6 m AGL

13:00 LST

Urban Heat Island e vertical fields of temperature (y=117 km)

13:00 LST

Comparison with Sodar and Mast measurements diurnal cycle at 44 m AGL

Comparison with Sodar measurements nocturnal and diurnal vertical profiles

03:00 LST

Vehicular emissions of CQ

Zoning of CO emissions during the morning peak hour (STA-Mobility Agency for the City of Rome, 2001)

Emission cycle for a typical ferial day

Dispersion of pollutants CO concentrations near the ground (0 ÷ 6 m AGL)

Influence of the UHI on the pollutant dispersion CO concentration averaged in the center of Rome

Conclusions

- The urban boundary layer of the Rome area is strongly influenced by the land and sea breeze regimes, both these winds are reinforced by interaction with slope winds.
- Because of the low soil moisture availability and the high thermal diffusivity, a strong urban heat island (UHI) forms.
- During the morning and the night the thermal plume of UHI is advected in reversal direction by sea and land breezes.
- The comparison between simulations and observations shows a good agreement with the exceptions of wind direction and turbulence during the night.
- Early morning and late afternoon emission peaks correspond to wind drops due to the alternate switching between land and sea breeze. This fact increases the concentration peaks.
- Because of the mixing increasing, the UHI lowers both the concentration peaks.