

9th International Conference on Harmonization within AtmosphericDispersion Modeling for Regulatory Purposes - June 2004

rerei

DIESEL LOCOMOTIVES CONTRIBUTION AROUND "GARE DE L'EST" STATION

Frédéric Mahé¹, Fabrice Maury², Erwan Corfa², <u>Armand Albergel²</u>

¹AI RPARIF (Air Quality Monitoring Network for Paris and I le-de France Region)

² ARIA Technologies SA, Boulogne-Billancourt, France

- « Gare de l'Est » district modeling
 - Context
 - Site modeling
 - Emission modeling
 - Choice of scenarios (emissions + meteorology)
- Results
 - District pollution levels, streets traffic only
 - District pollution levels including Diesel locomotive emissions

1.91

- Contribution of Diesel locomotive
- Conclusion

« Gare de l'Est » is the starting point of trains to Germany and to East (railways not all along electrified)

➔ Use of Diesel locomotives

Objectives of the study:

 Quantify the contribution of the background and of local sources for the whole district area,

 2) Quantify the impact of the Diesel locomotives for several running modes and for the selected meteorological conditions

3) Improvement due to new engine technology

Study realized by AIRPARIF ordered by Conseil Régional Ile-de-France and the City of Paris

General flowchart ARIA LOCAL

The district...

© AIRPARIF 2003

3,

Difficulties

- High density of buildings
- Complex geometry

Old Paris downtown

- High density and many kind of emission sources
 - Traffic (all types of vehicles)
 - Rail Station « Gare de l'Est »
 - Domestic and Tertiary emission
- Variability of the emissions in time and space
- High sensitivity to meteorological situation
- CPU Consuming : Up to 3 days per run

FIND THE « RIGHT » COMPROMISE

PARIF

- « Gare de l'Est » district modeling, et en c
 - Context
 - Site modeling
 - Emission modeling
 - Choice of scenarios (emissions + meteorology)
- Results
 - District pollution levels, streets traffic only
 - District pollution levels including Diesel locomotive emissions
 - Contribution of Diesel locomotive
- Conclusion

Final mesh and buildings as seen by the model AIR PARIE ferenci Gare du Nord 150 125 Rue du 100 Faubourg 75 St Martin 137,900 Gare de l'Est 131200 • 131000 130800 **Boulevard** Magenta 10 601800 meters

Vertical resolution : 1m at ground and 46m at the top (170m)

- « Gare de l'Est » district modeling, et en c
 - Context
 - Site modeling
 - Emission modeling
 - Choice of scenarios (emissions + meteorology)
- Results
 - District pollution levels, streets traffic only
 - District pollution levels including Diesel locomotive emissions
 - Contribution of Diesel locomotive
- Conclusion

Emission modeling

Street traffic emission :

- ferenci Significant data for the morning rush hours a weekly day (source : DREIF)
- National urban vehicle fleet for the year 2000 (source \geq ADEME/INRETS + Observatoire des déplacements)
- Emission factors Copert III \succ

Diesel locomotives emissions

- 6 minutes period (9h15-9h20) with 3 locomotives CC72000 on 3 near \succ lines (source SNCF)
- Emission factors for (3 Engine speeds (idle/arriving, warming up, \succ departure) (source : SNCF)

V8, V10 et V11 are railways where the 3 locomotives are.

For the parked locomotive, two modes are considered : -mode 1 : « I dle » - mode 2 : « Warming up »

A	RPARIE	Emis	sions Factors	for	
		Diese	el locomotives		
	Pollutar	nt	idle/Arriving	Warming up	départure (1min)
	CO		3103 g/h	1600 g/h	1480 g/h
	NOx	1al	577 g/h	7500g/h	10420 g/h
	Particul	es	259 g/h	350 g/h	425 g/h

Emissions data for CC72000 locomotive (source SNCF) We generally consider that the emissions during the « idle phase » are the same than during the « arriving phase » : no traction effort in both cases

PARIE Compa	rison betwee	n streets and	d Gare de l'Es
emissi	ons (1)		nce
Sources (6 minutes of loco presence)	CO	NOx	Particles
Street traffic	16 kg	1.8 kg	197 g
Locomotives, "warming up" mode	628 g	1.6 kg	97 g
for standing	i.e. 3.9 % of	i.e. 88.9 % of	i.e. 49.2 % of
locomotives	street traffic	street traffic	street traffic
Locomotives, "idle" mode for	904 g	337 g	80 g
standing	i.e 5.7 % of	i.e. 18.7 % of	i.e. 40.6 % of
0	street traffic	street traffic	street traffic

During this 6 minutes periods, the « Gare de l'Est » emission are :

- very important for NOx
- significant for particles
- low for CO

Comparison between streets and station					
emiss	ions (2)		CE		
Sources Inside the domain	CO	NOX	Particles		
Street traffic (weekly day)	2400 kg/day	270 kg/day	29.6 kg/day		
Locomotives (Standard day source SNCF)	21 kg/day	68 kg/day	3.4 kg/day		
<i>Car Traffic emission for all the city of Paris (weekly day)</i>	191 tons/day	35 tons/day	3.3 tons/day		

Diesel locomotives give 20 % of the daily emissions for NOx et 10 % for particles over the whole district

© AIRPARIF 2003

- « Gare de l'Est » district modeling, et en c
 - Context
 - Site modeling
 - Emission modeling
 - Choice of scenarios (emissions + meteorology)
- Results
 - District pollution levels, streets traffic only
 - District pollution levels including Diesel locomotive Oemissions
 - Contribution of Diesel locomotive
- Conclusion

Definition of scenarios

3 configurations for the emissions :

- Street traffic only (Reference case)
- Street traffic + 3 Diesel locomotives considering 2 Engines in « warming up » mode, (scenario « Loco 1 »)
- Street traffic + 3 Diesel locomotives considering 2 Engines in « I dle » mode, (scenario « Loco 2 »)

4 meteorological conditions :

Situation meteo	Stability	Wind Direction	Wind Speed
5D-SW	Neutral (D)	SW (220°)	5 m/s
2D-SW	Neutral (D)	SW (220°)	2 m/s
5D-NE	Neutral (D)	NE (22°)	5 m/s
2D-NE	Neutral (D)	NE (22°)	2 m/s

PARIE

Configurations retenues

Meteo					
		5D-SO	2D-SO	5D-NE	2D-NE
suc	Reference	Х	X	Х	х
nissi		(CO, NOx, PM)	(CO, NOx, PM)	(CO, NOx, PM)	(CO, NOx, PM)
Configurations er	Loco 1	X (CO, NOx, NOxrail, PM, PMrail)	X (NOx, NOxrail, PM)	X (NOx, NOxrail, PM)	X (NOx, NOxrail, PM)
	Loco 2	X (CO, NOx, NOxrail, PM)	-h-bau		

➔ Need of two virtual species (NOx_all and NOx_rail) to easily compute contribution of Gare de l'Est station (I dem for PM)

AIR PARIE

- « Gare de l'Est » district modeling, et en c
 - Context
 - Site modeling
 - Emission modeling
 - Choice of scenarios (emissions + meteorology)
- Results
 - District pollution levels, streets traffic only
 - District pollution levels including Diesel locomotive emissions
 - Contribution of Diesel locomotive
- Conclusion

- > Turbulence Closure: (k-ε Dyunkerke)
- Virtual potential temperature as thermal variable
- « Terrain following » for the curvilinear
- Advection Semi-lagrangian methods for scalars : θ, CO, NOx_all, PM et NOx_rail
- Background : a time dependent profile
- Release : time dependent mesh injection mode

District pollution level Street traffic only

AIR PARIF District pollution level Street traffic only

Background concentrations are representative of dense urban district of Paris

Computed street concentrations are close to measurements done in the district

- « Gare de l'Est » district modeling, et en c
 - Context
 - Site modeling
 - Emission modeling
 - Choice of scenarios (emissions + meteorology)
- Results
 - District pollution levels, streets traffic only
 - District pollution levels including Diesel locomotive emissions
 - Contribution of Diesel locomotive
- Conclusion

conterence All results are given at t = 6 minutes • 1 arriving locomotive, • 2 or 3 parked locomotives • 1 departure including a cycle of:

District pollution level Street traffic + Diesel locomotives

EXAMPARIF District pollution level Street traffic + Diesel locomotives

District pollution level

Street traffic + Diesel locomotives

I so-surfaces concentrations of PM >= $60 \mu g/m3$

- « Gare de l'Est » district modeling
 - Context
 - Site modeling
 - Emission modeling
 - Choice of scenarios (emissions + meteorology)
- Results
 - District pollution levels, streets traffic only
 - District pollution levels including Diesel locomotive emissions
 - Contribution of Diesel locomotive
- Conclusion

IR PARIF Contribution of Diesel locomotives -> NOx

►AIR PARIE Contribution of Diesel locomotives → NOx

►AIR PARIE Contribution of Diesel locomotives → PM

© AIRPARIF 2003

Persistence of the contribution of Diesel locomotives . Green of the contribution on Diesel locomotives after the end of pollutant emissions Harmon Harmon Carter

t = 9 after the end of locomotives emissions

- « Gare de l'Est » district modeling
 - Context
 - Site modeling
 - Emission modeling
 - Choice of scenarios (emissions + meteorology)
- Results
 - District pollution levels, streets traffic only
 - District pollution levels including Diesel locomotive emissions
 - Contribution of Diesel locomotive
- Conclusion

Car traffic background and street concentration correctly computed and in agreement with:

- Specific terrain campaigns
- Similar areas in Paris downtown

Contribution of Diesel locomotives

- Sensitive to the engine running speed (idle or warming up) especially for NOx
- Negligible I mpact for CO
- ➤ Important Impact for NOx and PM → 60 % contribution and more in the vicinity of the station (inside and few hundred meters downwind
- Significant persistence up to 10 minutes after the end of locomotive emissions.

Actions

Situation Year 2000 and before : Warming up inside « Gare de l'Est »

Situation Year 2002: idle mode when parking , the warming up already done in the « Ourq » marshalling yard.

Situation 2004: CC72000 new engines

Emission reduction: CC72000 new motorization

			CE
		sere	
Pollutant	Idle/Arriving	Warming up	Departure (1 min)
СО	1354 g/h	369 g/h	545 g/h
	56 % Cut down	77 % cut down	63 % de
	: sau		
NOx	193 g/h	3371 g/h	7048 g/h
	67 % cut down	45 % cut down	soit 32 % de
		Pai	réduction
Particles	isch	-	-

Data for a locomotive CC72000 with new engine

(source SNCF)

