A study of heat transfer effects on air pollution dispersion in street canyons by numerical simulations
N. Moussiopoulos,1.'Ossanlis and Ph. Barmpas Aristotle University Thessaloniki, Greece

MIMO

\Rightarrow 3D, prognostic microscale model.
\Rightarrow Predicts air motion near building structures.
\Rightarrow Solves conservation equations for:
> Mass
> Momentum
> Scalar quantities like potential temperature, TKE \& specific humidity
\Rightarrow Heating module calculates heat transfer through:
$>$ Conduction
$>$ Convection
$>$ Radiation

MIMO validation (1/3)

\Rightarrow vs. wind tunnel experiments of Rafailidis (1997) for the isothermal case (cf.Assimakopoulos, 2001)
\Rightarrow vs. field measurements of Panskus et.al. (2002) for the heated walls case
\Rightarrow vs. wind tunnel experiments of Bezpalcová (2003) for pollutants dispersion.

MIMO validation (3/3)

Pollutant dispersion case

Wind tunneh results
MIMO model results

Current study

\Rightarrow Effect of heated street canyon walls on the dispersion of pollutants is considered.
\Rightarrow Heat transfer from the street canyon walls to the air through convection based on the heat transfer coefficient α.
\Rightarrow Heat transfer coefficient α calculated by:

$$
\alpha=\frac{\left|Q_{f}\right|^{n}}{\left(T_{0}-T_{\infty}\right)}=\frac{P \rho c_{p}\left|u_{*} \theta_{*}\right|}{\left(T_{0}-T_{\infty}\right)}
$$

$>u_{*}$ is the friction velocity
$>\theta_{*}$ is the surface layer temperature scale
\Rightarrow Simulations in 2D were performed for street canyons with aspect ratios of $0.33,1.0 \& 2.0$
\Rightarrow For all aspect ratios:
$>$ Either the leeward or the windward wall was heated
$>\Delta T$ between heated wall and ambient air assumed at:
a) 0 K (Isothermal case)
b) 5 K
c) 10 K
d) 15 K
\Rightarrow Current discussion focuses on the isothermal case and the cases of (leeward or windward) heating by 15 K
\Rightarrow Results of MIMO compared with those of TASCflow.

Assumed boundary conditions:
\Rightarrow Inlet power law wind profile with $U_{\delta}=5 \mathrm{~m} / \mathrm{s}$
\Rightarrow Surface layer height $\delta=100 \mathrm{~m}$
\Rightarrow Roughness length $\boldsymbol{z}_{\boldsymbol{o}}=0.05 \mathrm{~m}$
\Rightarrow Inflow turbulence intensity $=\mathbf{0 . 0 3}$
\Rightarrow Mass flow of passive pollutants $Q s=1.5 \mathrm{mg} / \mathrm{s}$
\Rightarrow Turbulence model: standard $\boldsymbol{k}-\varepsilon$ with standard wall functions

Same computational domain used for all cases

\Rightarrow Grid size

> Aspect ratio $0.33 \quad 142 \times 115$ cells
\Rightarrow Aspect ratio $1.0 \quad 167 \times 115$ cells
$>$ Aspect ratio $2.0 \quad 207 \times 115$ cells
\Rightarrow Results obtained for
$>$ In-street canyon flow \& concentration field
$>$ Calculated concentration across the street canyon at Y/H 0.15, 0.5 \& 1.0
$>$ Non dimensional values of the calculated concentration obtained:

$$
C^{*}=\mathcal{C} U_{\delta} H /\left(Q_{s} / L\right)
$$

$>C^{*}$ is the non-dimensional concentration
$>C$ is the calculated inert pollutant concentration
$g>U_{\delta}$ is the reference wind velocity
$>H$ is the height of the street canyon
$>Q_{s}$ is the mass flow of the passive pollutants
$>L$ is the characteristic length of the source

Aspect ratio 0.33, isothermal case
\Rightarrow MIMO predicts a system of two counter rotating vortices.
\Rightarrow TASCflow predicts a system of three vortices with adjacent ones rotating in opposite directions.

SMIMO: maximum concentrations near the windward side
>TASCflow: maximum concentrations near the leeward side

Flow field comparison for aspect ratio 0.33 for the isothermal case

(a) MIMO
 (b) TASCflow

Aspect ratio 0.33, leeward wall heated ($\Delta \mathrm{T}=15 \mathrm{~K}$)
\Rightarrow Both codes predict a system of three vortices:
$>$ One large primary vortex
$>$ Two small ones at the lower part of the street canyon
\Rightarrow Disagreement between MIMO \& TASCflow regarding the size of the vortices:
\rightarrow MIMO predicts a much smallen vortex near the leeward wall side than TASCfiow
$>$ MIMO: relatively equal concentrations near the two wall sides
>TASCflow: maximum concentration near the windward wall side

Flow field comparison for aspect ratio 0.33 with the leeward wall heated, for $\Delta T=15 K$

(a) MIMO
 (b) TASCflow

Aspect ratio 0.33, windward wall heated $(\Delta T=15 K)$

 \Rightarrow MIMO predicts a system of three vortices:$>$ One vortex near the roof level
>One large, centrally located vortex
$>$ One small at the lower part of the street canyon
\Rightarrow TASCflow prediets a system of two counter rotating vortices:
$>$ One near the roof level
$>$ One large vortex covering $\sim 75 \%$ of the total street canyon area

- MIMO: maximum concentrations near the leeward side while TASCflow near the windward side

Flow field comparison for aspect ratio 0.33 with the windward wall heated, for $\Delta T=15 K$

(a) MIMO
(b) TASCflow

Calculated dimensionless concentration across the street canyon for aspect ratio 0.33

(a) $\mathbf{Y} / \mathrm{H}=\mathbf{0 . 1 5}$

Aspect ratio 1.0

\Rightarrow The flow fields predicted by both codes are in good agreement
$>$ One centrally located vortex
$>$ Two small ones at the street canyon ground level near each of the building walls
\Rightarrow For all cases for $\mathbf{V} / \mathbf{H} \leq 0.5$, both codes preedict maximum concentrations near the leeward side
\Rightarrow For $\mathrm{Y} / \mathrm{H}=1.0$ both codes predict maximum concentrations near the windward side
\Rightarrow Heat transfer phenomena do not affect markedly the flow field

\Rightarrow Calculated concentrations increase when either the leeward or the windward wall is heated

Flow field comparison for aspect ratio 1.0 for the isothermal case

(a) MIMO
(b) TASCflow

Calculated dimensionless concentration across the street canyon for aspect ratio 1.0
(a) $\mathbf{Y} / \mathbf{H}=\mathbf{0 . 1 5}$

Aspect ratio 2.0

\Rightarrow For aspect ratio 2.0 the flow fields predicted byboth codes are in good agreement
$>$ One centrally located vortex
$>$ Two small ones at the street canyon ground level near each of the building walls
\Rightarrow TASCflow however, predicts a larger vortex near the leeward wall side than MIMO
\Rightarrow As a result for $\mathrm{Y} / \mathrm{H} \leq 0.5$, for all cases MIMO predicts maximum concentrations near the leeward wall side at X / W ~ 0.1 while TASCflow at $X / W \sim 0.3$
\Rightarrow Heat transfer phenomena do not affect markedly the flow field

\Rightarrow Calculated concentrations increase when either the leeward or the windward wall is heated

Flow field comparison for aspect ratio 2.0 for the isothermal case
(a) MIMO
(b) TASCflow

Conclusions

$\underline{\text { Aspect ratios } 1.0 \text { and } 2.0}$

\Rightarrow The flow field predicted by MIMO is similar to that obtained with TASCflow for all cases considered \Rightarrow Yet, MIMO predicts higher yelocity components than TASCflow and therefore there is a strong disagreement between the corresponding concentration fields

Aspect ratio 0.33
\Rightarrow Results show disagreement between the two codes in the predicted flow fields for all cases
\rightarrow As a result, the two códes predict maximum concentrations at different regions near the building walls

There is a need to study further how the selection of specific turbulence models - wall functions affects model performance.

Comparison of $u \& v$ velocity component fields respectively for aspect ratio $\mathbf{1 . 0}$ for the isothermal case

Comparison of $u \& v$ velocity component fields respectively for aspect ratio $\mathbf{2 . 0}$ for the isothermal case

ュиәиоdшоэ-ィ

