

Parametric study of the dispersion aspects in a Street Canyon area

Nektarios Koutsourakis Panagiotis Neofytou Alexander G. Venetsanos John G. Bartzis

Environmental Research Laboratory

NCSR DEMOKRITOS

Overview

- Scope of study
- Tool used for Numerical modelling
- Street-Canyon cases studied
- Conclusions

Scope of Study

In the framework of REVEAL and ROSE projects:

- Specifying of appropriate locations for measuringinstrument placement
 - Urban street-canyon measurement campaigns (Thessaloniki, Greece and Bremen, Germany)
 - Sensitivity threshold of instruments as regards to pollutant concentration (assurance of non-zero indications)

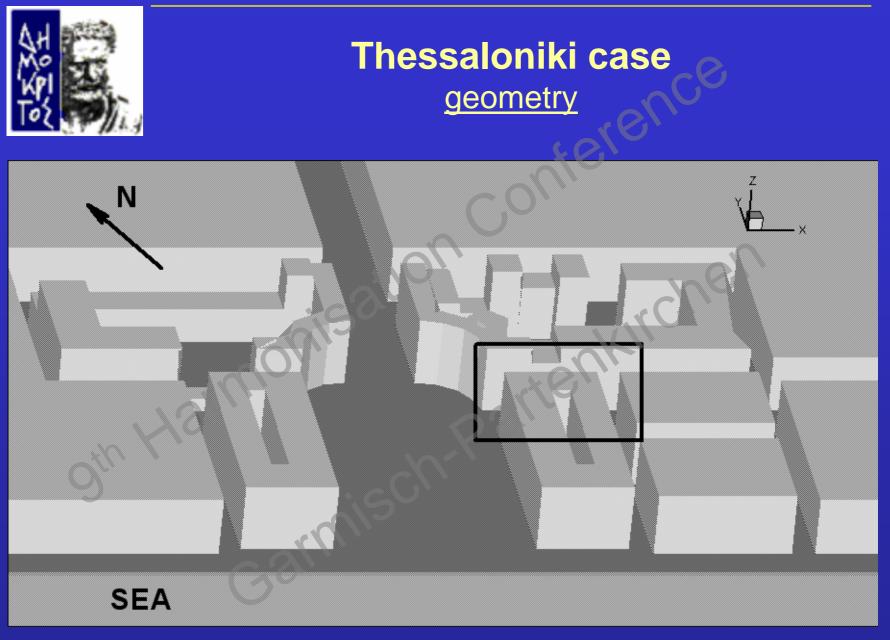
Numerical Modelling Tool

Computational Fluid Dynamics (CFD) code ADREA-HF:

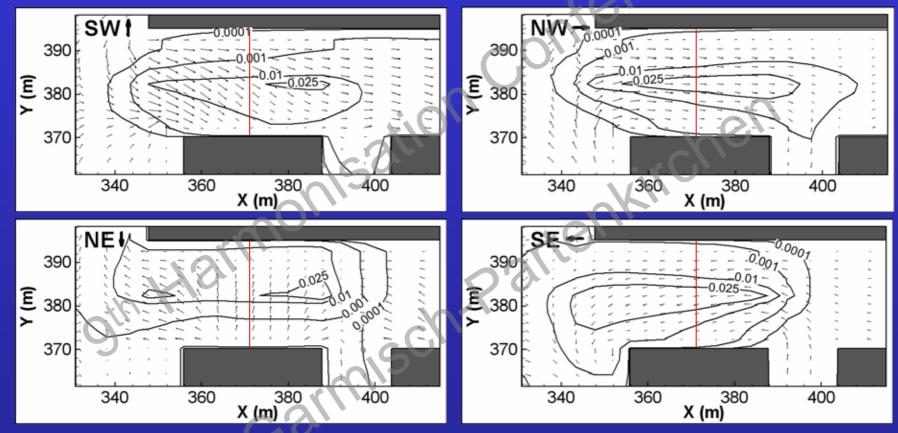
- Solves both
 - the 3-D, time dependent RANS equations (equations for turbulent flow) in a given geometry using original anisotropic one-equation model for turbulence closure
 - the Mass Transfer equation of a pollutant in a given geometry
- Complex geometry (irregular terrain/man made structures) placed on Cartesian grid using Porosity formulation
 Recent development: Incorporation of tunnels/cavities within an urban area

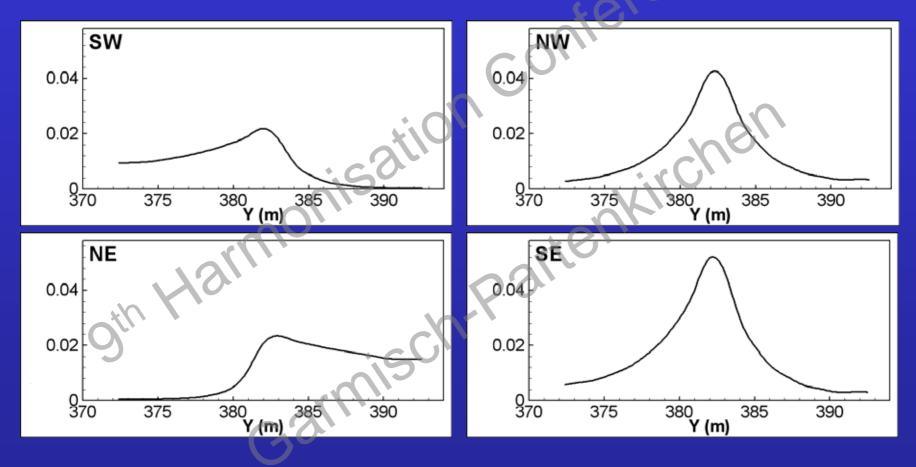
Thessaloniki case Aristotelous square

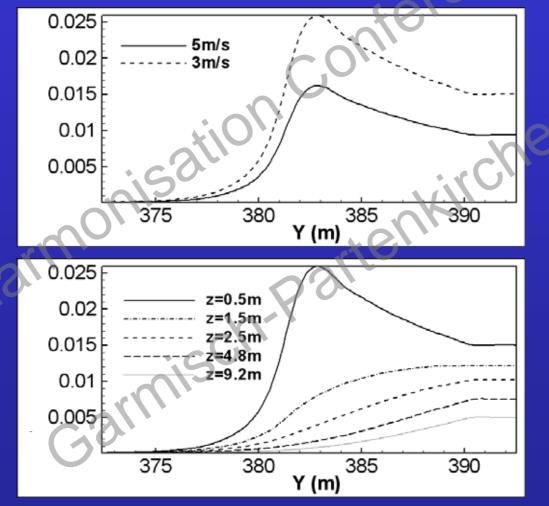
Thessaloniki case Mitropoleos street



Thessaloniki case modelling data


- Computational domain based on photographs of the area (Aristotelous Sq., Thessaloniki)
 - 736x763x180m area \rightarrow 41x48x30 grid
 - Encompasses all buildings in the vicinity of the area
- Road modelled as uniform area source emitting with constant rate.
- Different wind directions/velocities studied
 N, NW, NE, SW and SE directions, 3m/s
 - N direction, 3m/s, 5m/s




Thessaloniki case Effects of wind direction: normalised (10⁶ppm/Kg/s) concentration across street (z=0.5m)

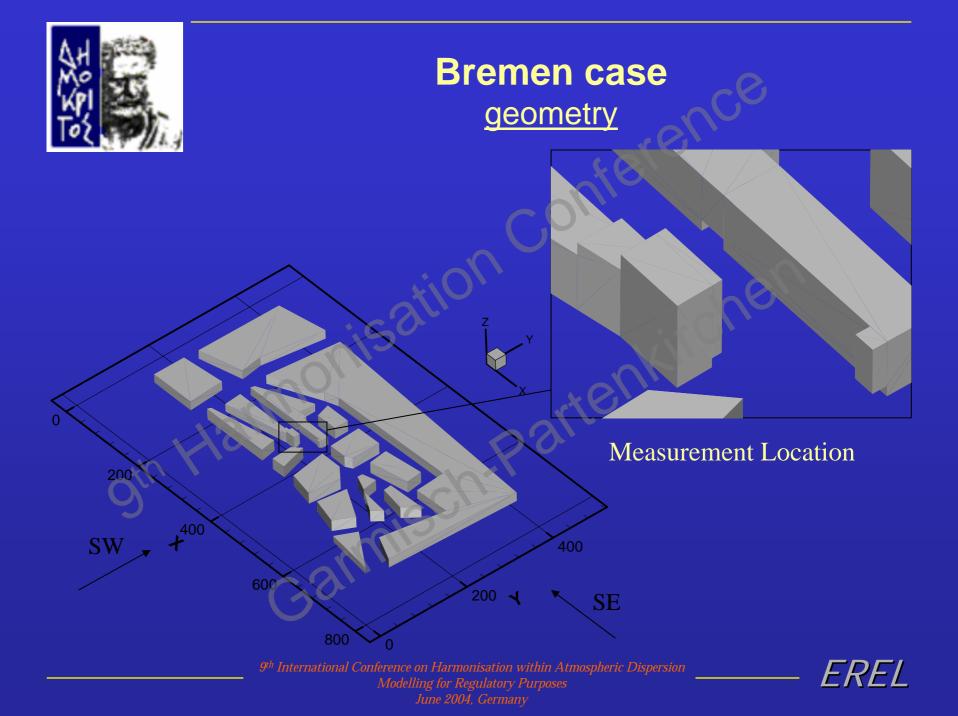
Thessaloniki case Effects of height and wind velocity: normalised (10⁶ppm/Kg/s) concentration across street

Thessaloniki case

- Height and high wind velocity reduces signal strength
- Vertical-to-the-street winds result in higher concentrations at the upwind side of the street
- Parallel-to-the-street winds result in higher concentrations at the vehicle level
- Presence of secondary streets can cause flow-splitting thus dispersing the pollutant in both directions ⇒ positioning of beam in the centre of canyon not beneficial

Bremen case modelling data

- Computational domain based on photographs of the area (Martinistr., Bremen, Germany)
 - $800x500x100m \text{ area} \rightarrow 62x40x25 \text{ grid}$ (clustered near points of interest)
 - Encompasses all buildings in the vicinity of the area
- Road modelled as uniform area source emitting with constant rate.
- Dominant wind directions considered (according to the wind-rose of the area).
 - SW and SE directions, 9m/s



Bremen case Martini street

Bremen case beam-path study

Instruments consist of a source and reflector of beam along which the pollutant-concentration (C) is measured Parametric study

- Source, Reflector positions focusing on
 - Beam length (L)
 - Beam location
 - so that C*L is sufficiently high
- Pollutant-concentration along beam

Bremen case beam-path study

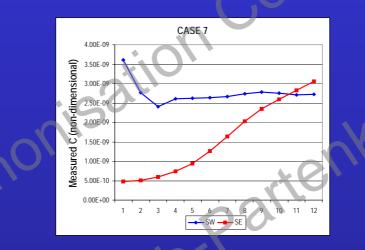
BEAM-PATHS	CASE No.	STAR	T (X, Y, Z)	[m]	END (X, Y, Z) [m]			LENGTH [m]
HORIZONTAL BEAM OBLIQUE TO STREET	1	328	221	4	347	244	4	29.8
	2	328	221	5	347	244	5	29.8
	3	328	221	7	347	244	7	29.8
HORIZONTAL BEAM VERT. TO STREET	4	326	221	4	326	244	4	23
	5	326	221	5	326	244	5	23
	6	326	221	7	326	244	7	23
ROOF-1 st FLOOR	7	341	222	25	347	244	4	31




Bremen case concentration levels

8

Beam-path oblique to street


Beam-path vertical to street

Bremen case concentration levels

Beam-path: Roof-1st floor

9	CASE No / Normalised Concentration Levels										
Wind Dir.	1	2	-3	4	5	6	7				
SW	3.55e-7	3.12e-7	2.51e-7	2.92e-7	2.60e-7	2.12e-7	8.42e-8				
SE	2.42e-7	2.03e-7	1.47e-7	2.78e-7	2.38e-7	1.74e-7	4.87e-8				

9th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes June 2004, Germany

Bremen case conclusions

- Height reduces signal strength
- Oblique placement ⇒ Wind-direction sensitivity of concentration levels
- Higher concentrations at the upwind side of the street
- Optimum placement: Beam vertical to street and close to the ground

Conclusions

- Height reduces signal strength
- Wind direction parallel to the street can induce higher concentrations for very low heights of beam-path position
- For positioning open-path measuring instruments:
 - Wind-direction sensitivity of concentration levels is to be taken into account
 - Flow-splitting phenomena can affect measurements
- Computational efficiency of ADREA-HF code for analysing effects of various parameters on the diffusion of a pollutant in a Street-Canyon area

