THE INFLUENCE OF AEROSOL PROCESSES IN VEHICULAR EXHAUST PLUMES:

MODEL EVALUATION AGAINST THE DATA FROM A ROADSIDE MEASUREMENT CAMPAIGN

Mia Pohjola¹, Liisa Pirjola^{2,3}, Jaakko Kukkonen¹, Ari Karppinen¹ and Jari Härkönen¹

¹Finnish Meteorological Institute, Air Quality Research ² University of Helsinki, Department of Physical Sciences ³Helsinki Polytechnic

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Introduction

• Previous work

- Pohjola, M A, Pirjola, L, Kukkonen, J, Kulmala, M. 2003. Modelling of the influence of aerosol processes for the dispersion of vehicular exhaust plumes in street environment. Atmospheric Environment, 37, 3. pp.339-351.
 Focus was on the importance of various aerosol processes
- This study: the evaluation of model predictions with measurements

The approach

Mobile laboratory

Sil

The measurement campaign

- Particle size distribution measurement at a height of 2.4 m:
 - Electrical Low Pressure Impactor:
 - 0,07 nm 10 μm
 - (aerodynamic diameter)
 - Scanning Mobility Particle Sizer: 3 50 nm (mobility diameter)
 - Condensation Particle Counter: total number concentration of particles larger than 3 nm
- Met measurements at a height of 3.4 m:
 - Relative wind speed & direction
 - Temperature, relative humidity
- Global Positioning System:
 - Van speed, driving route

CAR-FMI

- Contaminants in the Air from a Road Finnish Meteorological Institute
- Model includes an emission model, a dispersion model and statistical analysis of the computed time series of concentrations.
- Model utilises the meteorological input data evaluated with the meteorological pre-processing model MPP-FMI.
- The dispersion equation is based on an analytic solution of the Gaussian diffusion equation for a finite line source

 * Härkönen, J., Valkonen, E., Kukkonen, J., Rantakrans, E., Jalkanen, L. and Lahtinen, K., 1995. An operational dispersion model for predicting pollution from a road. International Journal of Environment and Pollution, Vol. 5, Nos. 4-6, 602-610.

Aerosol process model MONO32

- Lagrangian box model under clear sky conditions
- Gas-phase chemistry and aerosol dynamics
- Binary H₂SO₄-H₂O or ternary H₂SO₄-H₂O-NH₃ nucleation
- Multicomponent condensation of H₂SO₄, H₂O, organic vapour (soluble, partly soluble, insoluble)
- Coagulation
- Dry deposition

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Deposition

Coagulation

Nucleation

MONO32

•MONOdisperse representation for particle size distribution:

- nucleation mode 1 nm < d < 20 nm
- Aitken mode 20 nm < d < 100 nm
- accumulation mode 100 nm < d < 2.5 μ m
- coarse mode d > 2.5 μm
- All particles in a mode have the same composition (internally mixed particles)
- 4 variables for number concentrations, 7 variables for mass concentrations (sulphuric acid, ammonium sulphate, ammonium nitrate, OC, EC, sea salt, mineral dust) per mode
- \Rightarrow 32 variables
- As particles in a mode grow by condensation and coagulation and their size approaches that of the larger mode: mode merging

Evaluation of model predictions against measured data

- Measurements (resolution 10 min) for the time period
 February 17 20, 2003
 - We have selected periods, at which the wind was about perpendicular to the road (northwest), and then used the corresponding hourly averages (13 cases)
 - Weekdays from Monday to Thursday
- At distances smaller than 10 m from the road edge, we utilised an extrapolation of the CAR-FMI predictions
- The measured total number of particles was compared to the corresponding predicted values

February 19th, 2003

February 20th, 2003

ETEOROLOGICAL INSTITUTE

Meteorology during the measurement campaign

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Conclusions

- In a street scale, atmospheric dispersion is the most important factor regarding particulate matter concentrations (both number and mass concentrations); e.g., Pohjola et al., 2003
- The predicted concentrations showed the same dependencies as the measured data (in terms of the distance and the relative concentration values); however, the measured total number concentrations were substantially overpredicted in most cases
- The inaccuracies of the predictions were probably caused by the following:
 - Particulate matter emissions are most likely overestimated (as no up-to-date emission data was available that would contain simultaneously measured number concentration and chemical composition)
 - The dispersion of pollution originated from the two lanes to both directions should be modelled in more detail
 - Traffic volume varied \pm 30 % during the time periods considered (hourly)

Future work

- analysis of importance of different aerosol processes in the 1-200 m distance scale
 - condensation, coagulation
 - aerosol number concentrations in the size modes
 - aerosol composition in the size modes
 aerosol radii in the size modes

Acknowledgementse

- This work has been funded by Maj and Tor Nessling Foundation.
- We also wish to thank the people in the LIPIKA project for the mobile laboratory measurement data.
- projects KOPRA, OSCAR and SAPPHIRE.

