Sasou reaching new frontiers

Modelling long-range transport and chemical transformation of pollutants in the southern Africa region

<u>Gerhard Fourie¹</u>, Kobus Pienaar², George Djolov³ & Dimiter Syrakov⁴

- ¹ Sasol Technology Research & Development, South Africa
- ² North-West University, South Africa
- ³ University of the North, South Africa
- ⁴ National Institute of Meteorology and Hydrology, Bulgaria

Outline

- Introduction
- LED Model
 - **PBL** Dynamics
 - Partenkircher Chemical Transformations
- Model Input Requirements
 - Modelling domain
 - Meteorological data
 - Surface roughness
 - Emission sources
 - **Case Study**
- **Model Validation**
- **Conclusions & Next Steps**

onterence

Long Range Transport?

- "long range (or regional) transport (>100km); e.g. the area in which large-scale meteorological effects, deposition and transformation rates play key roles" *Zannetti*, 1990.
- Atmospheric pollutants have variable residence times in the atmosphere.
- Transport over long distances.
- Typical distances where the dynamics of Gaussian plume models fail.
- Puff model dynamics addresses this need.

enc

LED Model

- rence Lagrangian-Eulerian Diffusion (LED) Model
- Puff based model utilizing in a complementary way the positive features of the Lagrangian and Eulerian description of hydrodynamic flows.
- Lagrangian method Studying the properties variation of a fixed fluid volume during its motion. Any volume of polluted air is identified by the trajectory of its center of mass.
- The diffusion process of the polluted air are solved through differential equations in Eulerian coordinates, with the origin the center of mass.

Planetary Boundary Layer

- Unique feature of the LED is the solving of the ABL dynamics.
- Normal long range models utilize free atmospheric parameters (geostrophic wind velocity) available from meso scale meteorological models.
- Serious simplification since the changes in wind velocity and atmos. stability in the ABL dramatically influences the transport and diffusion processes.
- Frequent inversion layers at the top of the ABL forces the diffusion and transport of pollutants to take place in the lower parts of the atmosphere.
- The value of the vertical exchange coefficient changes by order of magnitudes depending on the stability conditions in the ABL.

- The LED utilizes a two-layer parametric ABL model (Yordanov et al, 1983).
- ABL model is driven by:
 - Geostrophic wind vector (\vec{v}_{g}) ;
 - Potential temperature at the top of the ABL (T_H) ;
 - Surface temperature (T_s)
- From these variables local parameters being calculated:
 - Coriolis parameter -f;
 - Roughness parameter z_0 ;
 - Buoyancy parameter β ;
 - Rosby number $-R_0$;
 - External stratification parameter S.
- There parameters uniquely determine the turbulent regime in the horizontally homogeneous ABL.

Chemical Transformations

- Chemistry model based on a simplified version of the MCM (*Jenkin et al.*, 1997).
- Explicit mechanism not a lumped sum mechnaism.
- Complete mechanism for inorganic pollutants.
- Chemical reactions (kinetics) described as differential equations.
- Integration by FACSIMILE.
- FACSIMILE
 - Fortran based, designed to solve stiff differential equations using a variable order Gear's method.
 - www.mcpa-software.com

Model Flow Diagram

Modelling Domain

Southern African region.

- 10°E 40°E; 10°S 35°S.
- Grid 60 x 50 (0.5° Resolution).

50 x 50 km.

copyright reserved 2004, Water & Environmental Technology, Sastech R&D

Meteorological Input

- Eta Model (South African Weather Service).
- The prognostic model in use is the NCEP regional eta- coordinate model with step-terrain representation.
- Integrated domain:
 - Southern Africa and surrounding waters, transformed grid roughly contained in 52°S to 1°N, 28°W to 68°E.
- Resolution:
 - 48km horizontally, with 38 eta levels in the vertical (top at 25hPa).
- GRIB Eta Model Output (12-Hr):
 - 60 by 50 grid, $10^{\circ}E 40^{\circ}E$; $10^{\circ}S 35^{\circ}S$, half degree resolution.
 - 700 hPa: U, V and temperature components.
 - Ground level: Temperature component.

Meteorological Input

60 by 50 grid, 0.5° resolution Geostrophic wind vectors (700hPa)

Surface Roughness (Z₀)

Emission Sources

sasi

reaching new frontiers

G Flemming & M Zunckel – CSIR South Africa

Case Study

- Long-range transport of SO₂ over southern Africa
 - 60 x 50 grid (0.5° resolution).
- Meteorological input from Eta model (12-Hr)
 - August 2000 (1 month).
- Emissions from SAFARI 2000 database
 - Hourly emissions from 1363 sources;
 - Ellipsoid (H_{Rad} 28km, H_{Vert} 10m & H_Z 100m).
- Z_0 data for August 2000.
- Complete inorganic chemical mechanism.
- No wet deposition / Only dry deposition.

irche

Case Study - Results

Case Study - Results

Validation Study

Sas

reaching new frontiers

Validation Study

	srence
DEBITS SO ₂ Concentration (µg.m ⁻³)	Simulated Mean SO ₂ Concentration (μg.m ⁻³)
0.4	0.6
0.6	KC 5.7
3.8	73.2
10.6	13.0
2.6	4.6
	DEBITS SO ₂ Concentration (μg.m ⁻³) 0.4 0.6 3.8 10.6 2.6

Validation Study

DEBITS Stations	SO ₂	Simulated Mean SO ₂
	Dry Deposition	Dry Deposition
	(mg.m ⁻ 2)*	(mg.m ⁻²)
Louis Trichardt	2.8	4.1
Palmer	2.7	35.5
Elandsfontein	5.7	6.8
Amersfoort	3.0	3.2
* Mphepya et al., 2002	m	

Conclusions

- The model can successfully simulate long range transport of air pollutants over southern Africa.
- The structure of the model allows for incorporation of a complete explicit chemical mechanism.
- The comparison with the available experimental data is quite satisfactory.

Next Steps

- Wet deposition properties.
- onterence Country to country deposition matrix
- Incorporate organic chemistry model:
 - Biomass burning events;
 - Tropospheric ozone formation over southern Africa.
- Study of pollution during prolonged gyre circulation.

armis

kirchei

Acknowledgements

The research work has been supported by the National Research Foundation (NRF), South Africa and the SIDA, Sweden Project 'Non-local turbulent transport in weather prediction and air pollution modelling' SRP-2000-036 (South Africa-Swedish Research Partnership Programme 2000).

