

ASSESSING THE IMPACT OF PARTICULATE MATTER SOURCES IN THE MILAN URBAN AREA

Stefano Mossetti, <u>Silvana P. Angius</u>, Elisabetta Angelino

Regional Environmental Protection Agency of Lombardy (ARPA Lombardia), Milan, Italy

Source apportionment of PM10 and PM2.5

at a PUMI project (Particolato Urbano Milanese – Urban Particulate in Milano) site: Milano

Using a receptor model:

US-EPA CMB (Chemical Mass Balance) approach: a single-sample model

More 'transparent' than multivariate models, where sources are estimated, not initially known

Goals:

ence

- Estimate the relative impact of different local emission sources on particulate concentrations

- Quantify the contribution of sources not included in emission inventories (e.g. re-suspension due to vehicular traffic, secondary particulate)

-I nvestigate the dependence of source contributions on particulate size

-I nvestigate the dependence of source contributions on meteorological conditions, such as rain and wind.

- Comparison and inter-validation with emissions inventories
- Useful information to evaluate control strategies

INPUT data

Source data

Ambient data

1- Ambient data

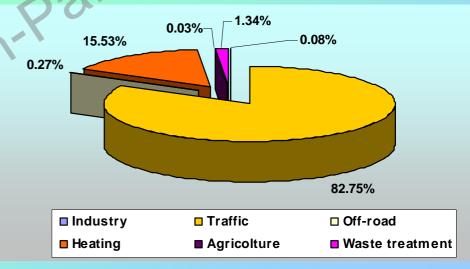
•Receptor site: via Messina Urban site, not directly influenced by local traffic

- •Available data: daily average PM_{10} and $PM_{2.5}$ concentrations, element (AI, Si, S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Pb), nitrate (NO_3^{-}), sulphate (SO_4^{-2-}), and ammonium ions (NH_4^{+}) concentrations
- •Sampling period: April-July 2002 for PM10; April-May 2002 for PM2.5 (summer)
- •Number of samples:

54 PM₁₀ samples : 37 averaged for no-precipitation day, 15 for typical rainy conditions, 1 for heavy rain (43 mm of rain during 14 hours), 1 for strong wind. 16 PM₂₅ samples

2- Source identification and fingerprints

Correlation matrix between species concentrations


	AL	SI	S	K	CA	TI	V	CR	MN	FE	NI	CU	ZN	BR	PB	
AL	1.00															
SI	0.98	1.00														
S	0.28	0.22	1.00													
Κ	0.86	0.85	0.41	1.00											t	
CA	0.94	0.97	0.13	0.84	1.00											
TI	0.86	0.84	0.48	0.94	0.82	1.00										
V	0.41	0.41	0.66	0.71	0.39	0.78	1.00									
CR	0.59	0.61	0.45	0.84	0.61	0.88	0.93	1.00				*				
MN	0.70	0.71	0.46	0.89	0.72	0.92	0.87	0.95	1.00		C					
FE	0.78	0.83	0.29	0.86	0.81	0.81	0.62	0.78	0.85	1.00						
NI	0.33	0.34	0.59	0.65	0.34	0.73	0.98	0.93	0.85	0.57	1.00					
CU	0.57	0.58	0.40	0.81	0.59	0.83	0.84	0.91	0.92	0.84	0.83	1.00				
ZN	0.45	0.46	0.39	0.69	0.48	0.64	0.68	0.70	0.72	0.68	0.65	0.76	1.00			
BR	0.24	0.25	0.56	0.59	0.25	0.64	0.95	0.87	0.79	0.50	0.96	0.80	0.72	1.00		
PB	0.37	0.37	0.55	0.72	0.37	0.72	0.89	0.86	0.81	0.68	0.88	0.87	0.72	0.89	1.00	

Soil dust and crustal material (AI, Si, Ca, Ti, K);

Traffic (Fe, Cu ...)

Stacks, industrial (Zn, Mn)

Secondary (S)

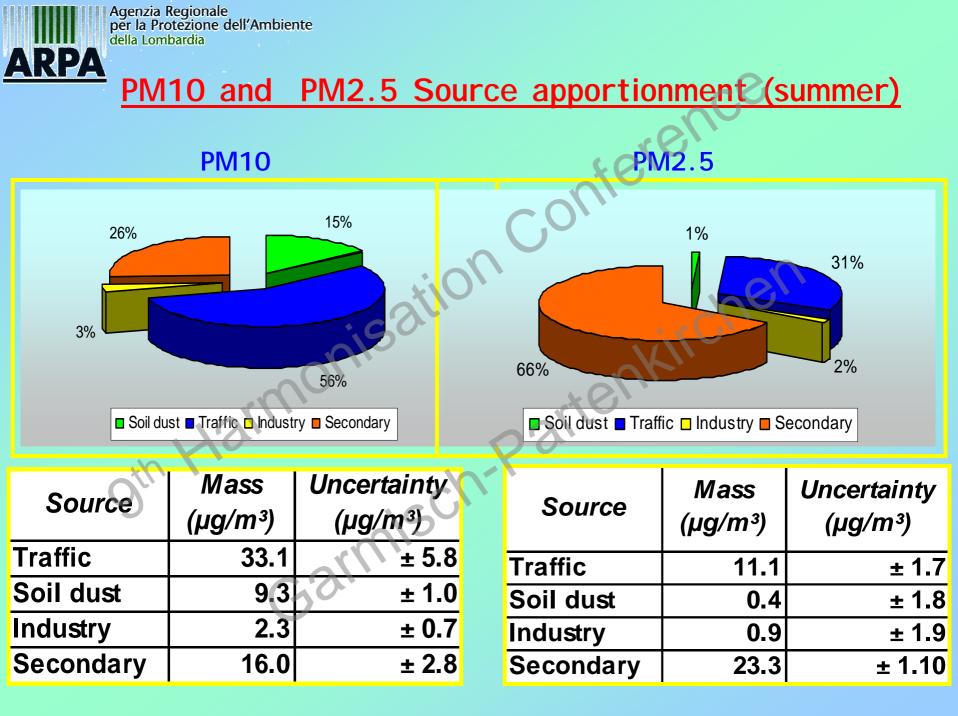
Emission sources of PM10 in Milano (Provincial emissions inventory, 1998)

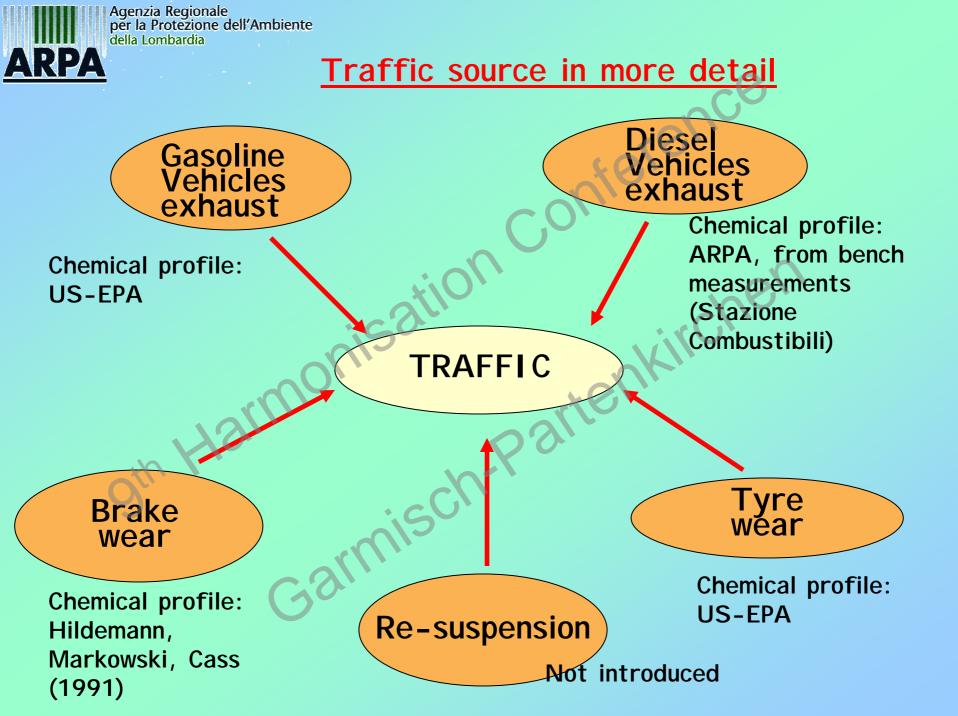
Source speciation

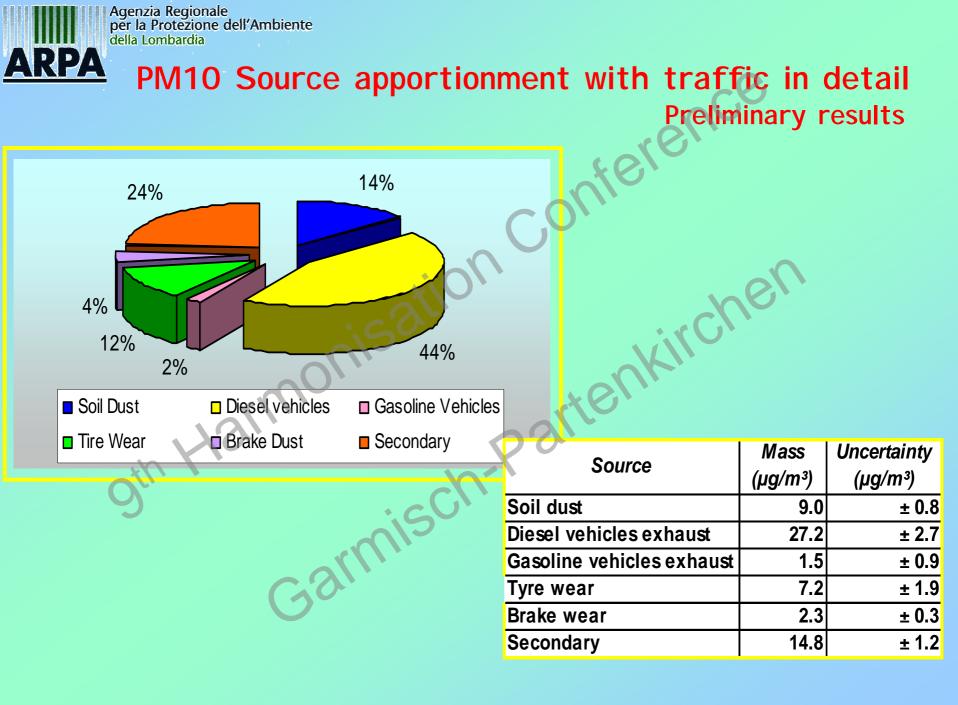
Source	Reference
Soil dust	Speciate 3.2 US-EPA
Industry	Speciate 3.2 US-EPA
Secondary	Watson e al., 1994
Traffic	This work

Traffic speciation: from local tunnel data

- Includes exhaust emissions, brake, tyre, asphalt wear, re-suspension
- Secondary: NO₃⁻ SO₄²⁻ source profiles consisting only of ammonium sulfate (SO₄²⁻, NH₄⁺, S) and ammonium nitrate (NO₃⁻, NH₄⁺)
- Traffic source in more detail

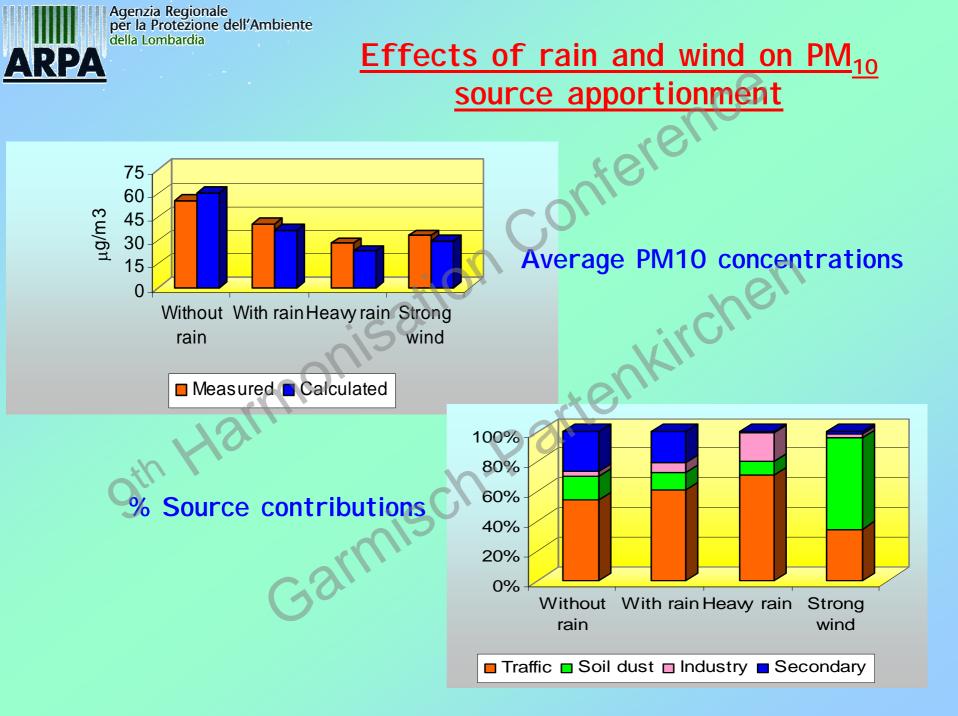

<u>Results</u>


Model results verified against statistical validation targets (EPA)


 $R^2 > 0.8$ $\chi^2 < 4$ 80% < % total mass < 120 % DoF > 5

Calculated PM10 and PM2.5 concentrations reproduce the measured values within \pm 18%

Statistical uncertainties are associated to mass contributions of each source.



Effects of meteorology

- Strong wind (daily average wind speed > 5 m/s, Foehn episode)
- Rain
- Hard and prolonged rain (precipitation = 43 mm duration 14 hours)

Source	Witho	ut rain	With	n rain 📿	Heav	y rain	Strong wind	
	Mass	Unc.	Mass	Unc.	Mass	Unc.	Mass	Unc.
	(µg/m3)	(µg/m3)	(µg/m3)	(µg/m3)	(µg/m3)	(µg/m3)	(µg/m3)	(µg/m3)
Traffic	33.058	± 5.757	22.420	± 3.952	16.307	± 3.659	10.189	± 3.464
Soil dust	9.265	± 0.973	4.341	± 0.624	2.143	± 0.742	18.032	± 1.363
Industry	2.329	± 0.691	2.557	± 0.683	4.514	± 1.001	0.860	± 0.264
Secondar	y 15.954	± 2.792	7.549	± 1.445	0.144	± 0.037	0.429	± 0.166

Conclusions

ference

- Contribution of traffic source: mainly diesel
- Brake and tyre wear not negligible
- Secondary source dominant in PM2.5 important also when deciding limits on PM2.5
- Important to consider dominant meteorological conditions when evaluating main emission sources

Needed:

- Extend model application to winter season (heating source fingerprint)
- Some source profiles must be improved (gasoline vehicles, re-suspension)
- Better description of secondary particulate (OC-EC)
- Focus investigation on PM2.5 as more data become available
- Extension of application to several other urban, extra-urban, rural sites in Lombardy (different emission sources: wood burning, cattle/swine/poultry)