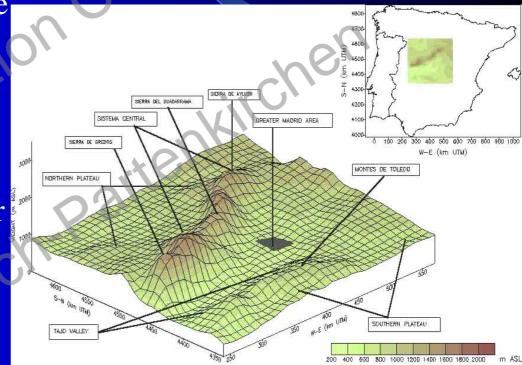


ESTIMATE OF POTENTIALLY HIGH OZONE CONCENTRATIONS AREAS IN THE CENTER OF THE IBERIAN PENINSULA


Magdalena Palacios, <u>Fernando Martín</u>, Begoña Aceña, Abdessalam Zarougui and Carmen Córdoba. Research Center on Energy, Environment and Technology (CIEMAT), Madrid, Spain.

1-4 June, 2004

INTRODUCTION (1)

- The Greater Madrid Area (GMA) is located in the centre of the Iberian Peninsula
- Huge source of ozone precursors.
- Intense formation of tropospheric ozone in summer time, late spring and early autumn.

INTRODUCTION (2)

- Recent European directives, air pollution modelling is a very important tool for many the air quality management:
 - air quality assessment,
 - design of plans and programs for air pollution abatement
 - design of networks for air quality monitoring. Furthermore,

• Development of ozone control strategies requires analysing ozone response to variations in precursors emissions considering a wide range of realistic meteorological conditions.

INTRODUCTION (3)

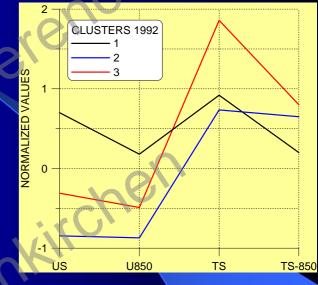
- Previous simulations (TVM model coupled to transport/chemistry module) for two different summer ozone episodes in GMA:
 - High levels of ozone, above the population information threshold and close to the alert threshold areas 100 km far away from Madrid city
 - Confirmed by observations (validated model)
 - Need of forcing to the reduction of not only traffic road but also total anthropogenic emissions to comply with standard levels.

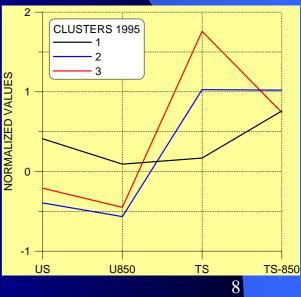
OBJECTIVE

• To study of which areas could be potentially affected by high ozone levels in the centre of the Iberian Peninsula by using an evaluated model.

METHODOLOGY

- 1. Set up of meteorological scenarios.
- 2. Simulations of the photochemical air pollution for the meteorological scenarios.
- 3. Analysis of the simulated spatial patterns of ozone concentration distribution.


Meteorological scenarios (1)


- Period for selecting meteorological scenarios from mid April to mid October.
- 1992 and 1995 (each year treated separately).
- Days with rain or overcast was removed.
- Selected variables representing the atmosphere state every day:
 - Surface and 850-HPa-level wind speed (ventilation).
 - Surface air temperature (important for ozone formation).
 - Temperature gradient between 850 HPa level and surface (atmospheric stability).
- Cluster analysis (k-means technique) was used in order to group days with similar meteorological state.
- All data were previously normalised.

Meteorological scenarios (2)

- 3 significant cluster resulted from every year
 - Custer 1 (3% and 4% of the studied days in 1992 and 1995).
 - higher-than-average winds,
 - high temperatures (less high in 1995)
 - little atmospheric unstability
 - Cluster 2 (63% -1992-, 77% -1995-)
 - very weak winds,
 - high temperatures
 - higher atmospheric unstability,
 - Cluster 3 (34% -1992-, 19% -1995-)
 - weak winds
 - temperatures are even higher than former cases.

Meteorological scenarios (3)

- Wind direction (850 HPa) was not used in cluster analysis because of its circular features.
- For setting up the meteorological scenarios representing every cluster, a sub classification was done based on wind direction (analysis of frequency histograms).
- The selected meteorological scenarios were determined as the day being closest to the mean state of every sub cluster.
- 9 representative days (scenarios) for every reference year were used in simulations (65% correspond to summer time).
- TVM models was used for air flows simulations.

Meteorological scenarios and daily flow evolution in GMA (1992)

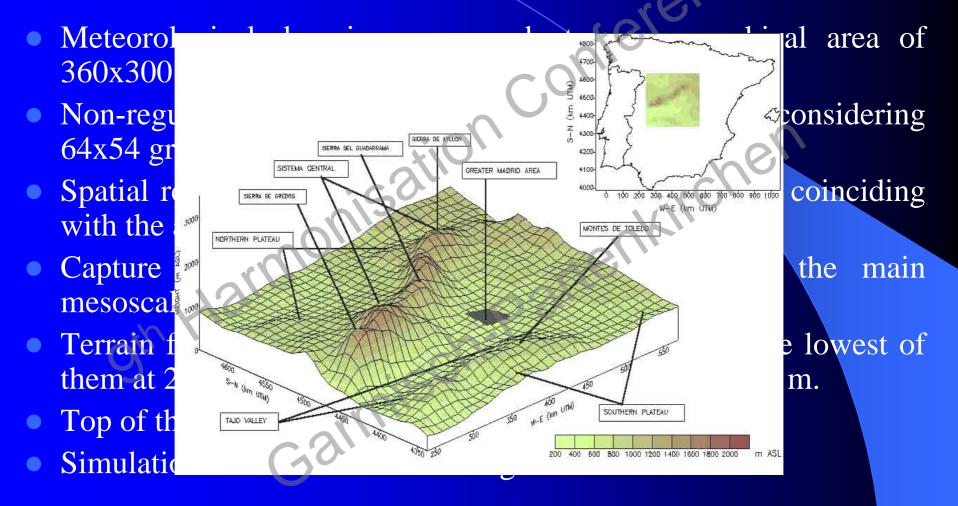
1992

Cluster	Julian	%	Wind	Wind	Night	Morning	Noon	Afternoon	Evening		
	day		Speed	Direction							
			(m/s)	(°) . •	\bigcirc						
1	133	3	7.4	151		_	>		0		
	112	13	2.5	140	~	_	×		0		
	118	19	1.4	107	1	> <u></u>		~	<u> </u>		
	276	4	3.1	318	0	0	~	`	< <u> </u>		
	177	23	4.2	211	o	-	1	~	<u> </u>		
2	253	4	2.6	92 92	0	J	4	~	<u> </u>		
	195	9	4.7	160	0	1	<u> </u>	<u> </u>	<u> </u>		
3	197	9	3.8	144	~	_	>	>	o		
	213	16	5.2	134	_	>	>	>	>		

Meteorological scenarios and daily flow evolution in GMA (1995)

	1995										
Cluster	Julian	%	Wind	Wind	Night	Morning	Noon	Afternoon	Evening		
	day		Speed	Direction	5						
			(m/s)	(°) •							
1	256	4	7.2	333	0	~	×.	CA	< <u> </u>		
	192	13	3.3	-281	1	~	X	~	~		
	186	9	4.7	159	0	00	0		0		
	158	12	5.3	114	6	3-	ſ	>	0		
	173	13	5.7	135	~	_	J	J	0		
	215	22	3.4	217	5	~	~	~	1		
-	153	7	2.8	98	1	~	~	~	<u> </u>		
3	188	12	5.10	143	~	7	J	1	0		
3	209	7	4.6	176	0	4	7	~	1		

1-4 June, 2004



Simulations of photochemical air pollution Model description

- Meteorological model used was the Topographic Vorticiy Mesoscale (TVM) model (Thunis and Clappier, 2000).
- Evaluated for the same domain (Martín *et al.*, 2001a, 2001b).
- Meteorological model is coupled to a transport/chemistry module based on the CIT model (McRae *et al.*,1983) and updated by Harley *et al.* (1993).
- Operator splitting technique by which advection is integrated separately from the diffusion/chemistry.
- Highly accurate and computational efficient hybrid scheme Gong and Cho (1993) for solving the chemical system of **RACM** mechanism (Stockwell *et al.*, 1997).
- TVM+RACM has simulated satisfactory ozone pollution episodes taking place in this region (Palacios, 2001; Palacios *et al.*, 2002b).

1-4 June, 2004

Simulations of photochemical air pollution Meteorological model setup

Simulations of photochemical air pollution Photochemical model setup

- A different grid than that for meteorology was used to run the transport/chemical module.
- Photochemical modeling domain is 270x200 km²
- Regular resolution of 5x5 km² coinciding with the area of maximum resolution of the TVM model.
- 54x40 grid points in horizontal
- 8 in the vertical up to 4400 m above the ground.
- Simulations cover 37 hours starting at 1200 UTC.
- Emission data resulted from a Top-Down methodolgy (Palacios and Martín, 2002):
 - Spatial disaggregation to 5x5 Km cells.
 - Time disaggregation \rightarrow hourly.
 - VOC speciation (18 species) by Loibl et al. (1993)

1-4 June, 2004

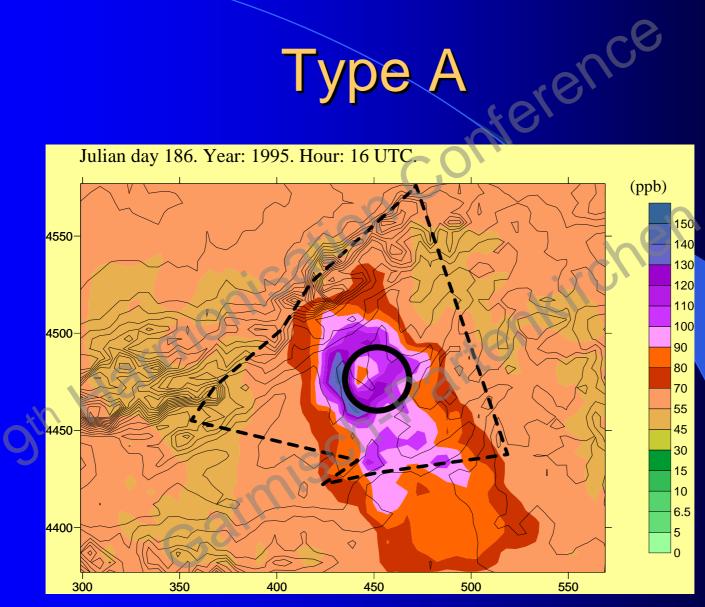
RESULTS Analysis of simulated flow patterns.

1992

1995

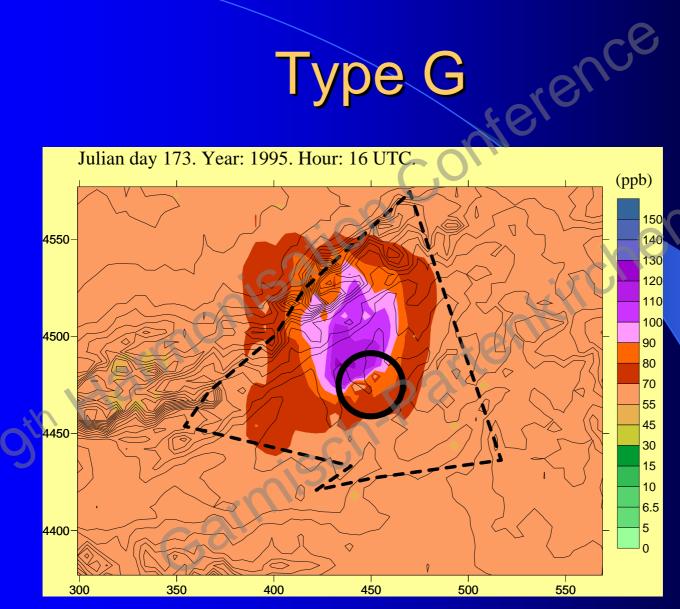
- Very notable air flow cycles.
- Mesoscale wind flows are strongly driving by the synoptic forcing.
- In many cases, surface winds have the same direction than those of synoptic.

1-4 June, 2004

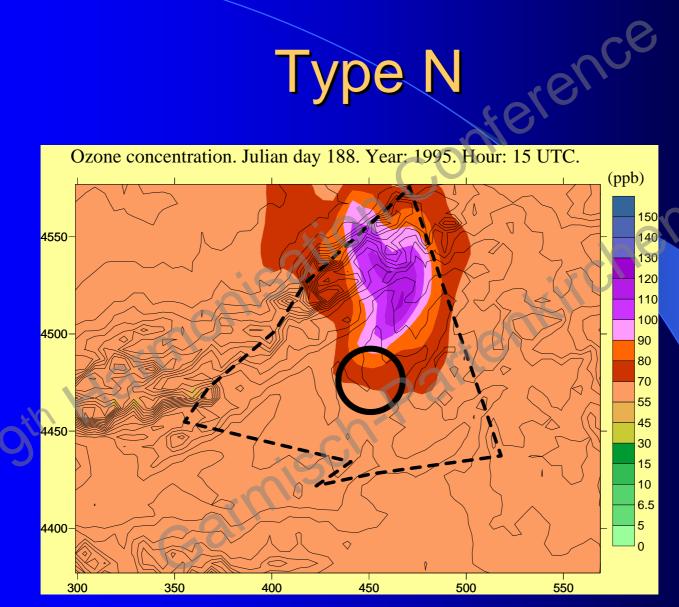

RESULTS

Analysis of the simulated patterns of ozone concentration (1)

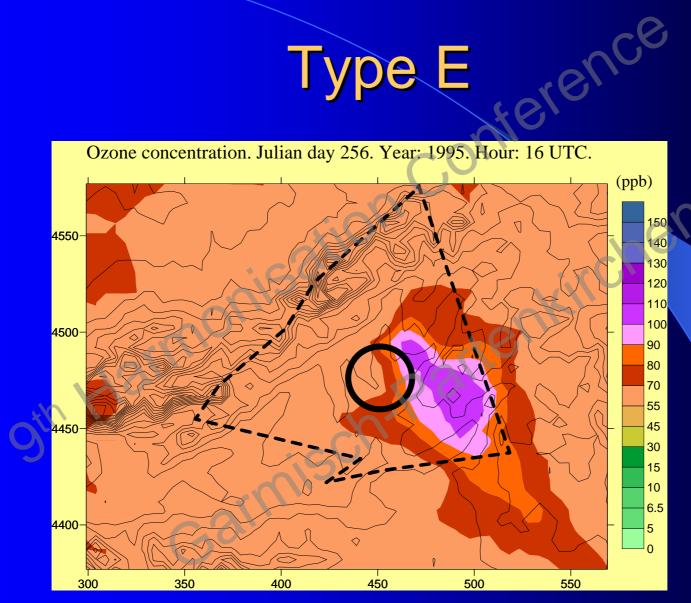
Four Ozone concentration patterns:
Type A : The whole Community of Madrid
Type G: Sierra del Guadarrama (Northwest)
Type N: Sierra de Ayllón (North)
Type E: East from Madrid metropolitan area.


Type A

1-4 June, 2004


Type G

Type N



1-4 June, 2004

HARMO 9 - Garmisch Partenkirchen, Germany

19

1-4 June, 2004

HARMO 9 - Garmisch Partenkirchen, Germany

20

RESULTS Analysis of the simulated patterns of ozone concentration (2)

1992											
Cluster	Julian day	%	Night	Morning	Noon	Afternoon	Evening	Ozone maxima location	Ozone maxima (ppb)		
1	133	3		-	- N	N	0	G	104		
-	112	13	r		7	<u> </u>	0	А	115		
	118	19	~	7	1	2	_	N	103		
*0 8	276	4	o	0	~	<u> </u>	K	E	91		
0)''	177	23	o			~	· ·	N	114		
2	253	4	0	19	4	Ý	7 	N	92		
	195	9	ø	1	3 <u>65 -</u> 17	-	<u> </u>	E	112		
3	197	9	O.		5	5	o	G	110		
	213	16	-	<u> </u>	2	2	N	N	88		

RESULTS Analysis of the simulated patterns of ozone concentration (3)

1005

				4	1995	U			
Cluster	Julian day	%	Night	Morning	Noon	Afternoon	Evening	Ozone maxima location	Ozone maxima (ppb)
1	256	4	0	2	<	κ.	1	E	110
	192	13	O.	1	1	×.		N	117
	186	9	0	0	o		0	А	149
	158	12	1	-		00	0	G	117
	173	13	r	-	1	J	0	G	126
2	215	22	5	2S	2	A.	1	N	81
	153	7	1		1	J.	s	N	103
3 -	188	12	0	S	J	~	0	N	121
	209	7	0	4	4	~	1	N	82

RESULTS Analysis of the simulated patterns of ozone concentration (4)

- Not very high ozone levels \rightarrow strong winds and low isolation
- Very high ozone levels \rightarrow weak winds and high isolation.
- High concentrations areas related to the synoptic wind forcing on the diurnal wind flow cycle.
- Frequently, high concentrations areas are 100 Km away from city.
 - Type N (affecting North area) \rightarrow 61%
 - Maximum average (104 ppb) but large variability in ozone levels (81-121 ppb).
 - Type G (affecting Northwest area) → 18%
 - Maximum average (117 ppb), variability (104-126 ppb)
 - <u>Type A (affecting almost all Community of Madrid)</u> → 12%
 - Maximum average (129 ppb) with a record of 149 ppb.
 - Type E (affecting East area) \rightarrow 9%
 - Maximum average (107 ppb), variability (91-112 ppb)

1-4 June, 2004