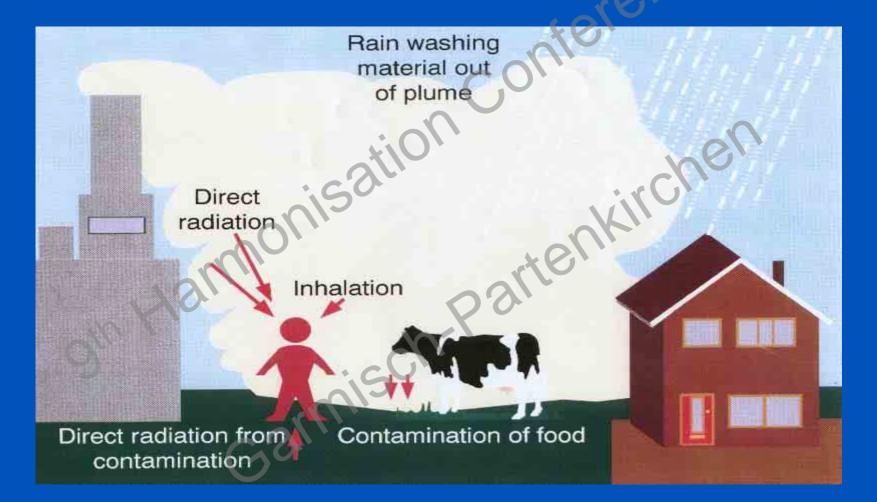
A Methodology for Assessing Doses from Short-term Planned Discharges to Atmosphere

Justin Smith



Introduction

- Authorisation of proposed discharges
- Techniques used for annual discharges may not be appropriate for short-term releases
- Need to formulate a generic methodology for the assessment of short-term releases of radionuclides to the atmosphere
- "Realistically cautious" approach
- Relatively simple to apply

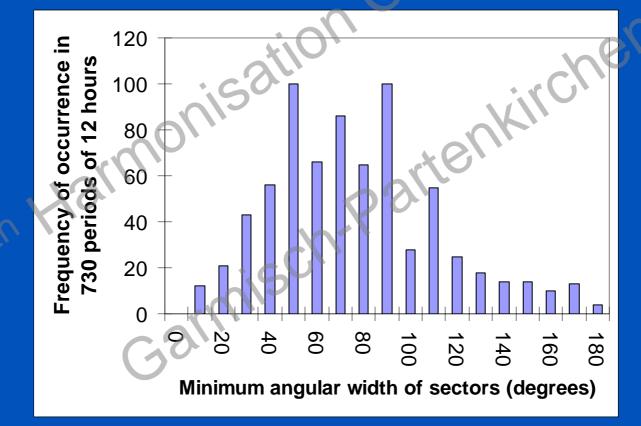
Exposure Pathways

Methodology

- Variability in all assessment parameters, focusing on meteorological data
- The adopted approach had to be one that could be implemented relatively easily in a readily available dispersion model
- Release durations of 30 minutes and 12 hours considered
- Need to represent changing meteorological conditions

Wind Meander

 Plume broadening due to wind meander can be represented using a model derived by Moore (1976)


$$\sigma_y^2 = \sigma_{yt}^2 + \sigma_{yw}^2$$

where σ_{yt} is a boundary layer turbulence component σ_{yw} is a wind direction unsteadiness component

Changes in Wind Direction

 Using meteorological data for Heathrow the angle over which the wind blows in a 12 hour period was determined

Impact of Release Duration

- Wind meander and changes in wind direction are two separate processes
- A wind meander model is included in ADMS 3.1 although the impact of release duration appears to be small compared to other implementations of this model
- An attempt has been made to account for wind meander and changes in wind direction by assuming the short-term 12 hour release occurs into a 60 degree sector

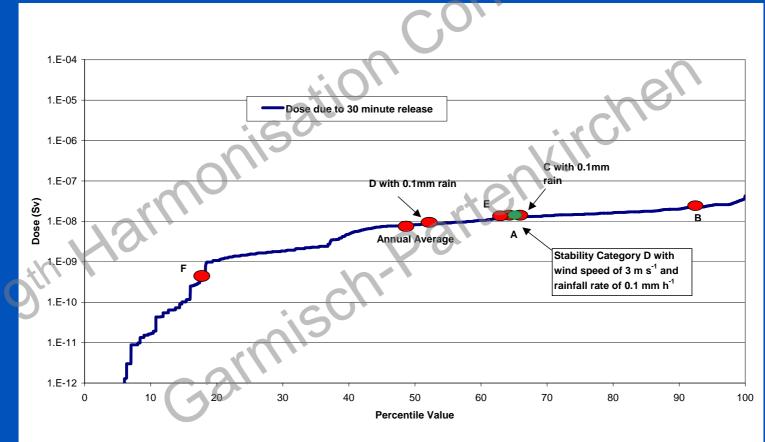
Comparison of ADMS 3.1 with NRPB-R91

In ADMS a 60 degree sector has been modelled for the 12 hour release

Distance downwind of release point on plume centre line (km)	Activity concentration in air (Bq m ⁻³), 30 m stack at 1 MBq s ⁻¹				
	ADMS		NRPB R-91	C	
	30 minute	12 hour	30 minute	12 hour	60 degree
		(60 degree sector)		in the second	sector
Category D no rain			-0	6	
1	$4.04 10^{0}$	1.42 10 ⁰	1.33 10 ¹	4.33 10 ⁰	2.00 10 ⁰
2	1.48 10 ⁰	4.60 10 ⁻¹	4.78 10 ⁰	$1.53 \ 10^{0}$	7.0 10^{-1}
5	3.84 10 ⁻¹	9.25 10 ⁻²	1.11 10 ⁰	$3.39 10^{-1}$	$1.6 \ 10^{-1}$
10	1.40 10-1	2.70 10 ⁻²	3.83 10 ⁻¹	1.15 10 ⁻¹	5.5 10 ⁻²
~)		· CU'			

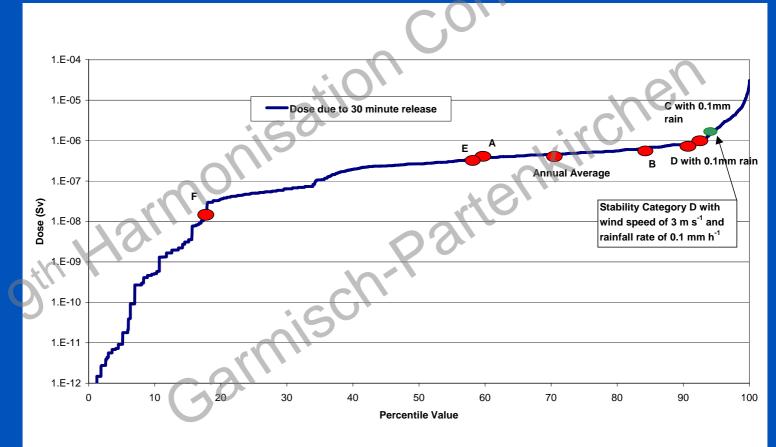
Variation in Meteorological Data

- Full range of meteorological conditions possible
- Probabilistic assessment gives a range of possible outcomes
- Regulators would rather have single values
- Representative meteorological data are needed

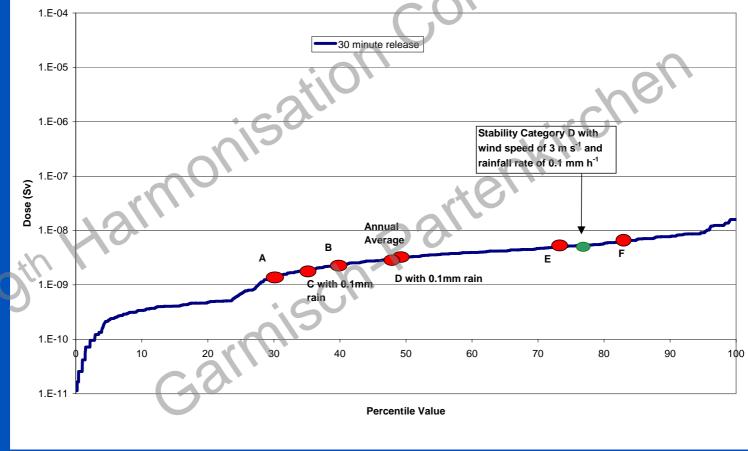

Influence of Meteorological Data on Dose

- Inhalation and ingestion doses estimated for different meteorological conditions
- Exposed group located 300 m and 1 km downwind of source on plume centre line
- All food derived from these locations
- Meteorological data for Heathrow were used
 ADMS 3.1 was used to model dispersion and results input to the dose assessment

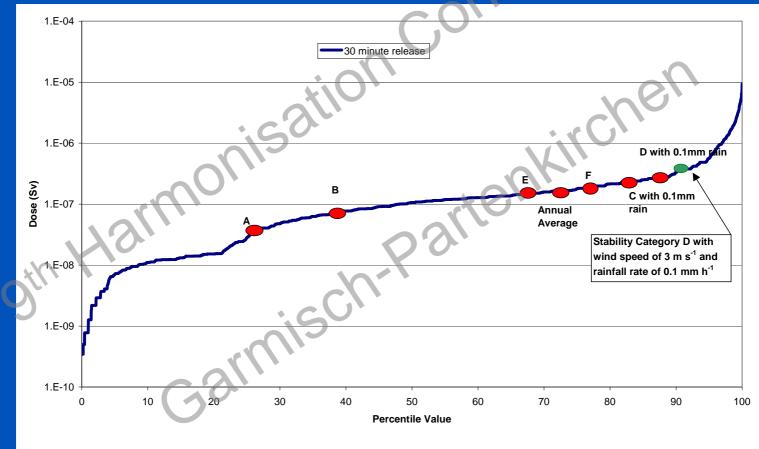
Dose percentiles calculated for inhalation of ⁹⁰Sr


For a 30 minute release at 300 m downwind of 30 m high source

Dose percentiles calculated for ingestion of ⁹⁰Sr


For a 30 minute release at 300 m downwind of 30 m high source

Dose percentiles calculated for inhalation of ⁹⁰Sr


For a 30 minute release at 1 km downwind of 30 m high source

Dose percentiles calculated for ingestion of ⁹⁰Sr

For a 30 minute release at 1 km downwind of 30 m high source

Representative Meteorological Data

- The aim was to identify a single set of meteorological conditions that would reproduce critical group doses in the upper part of the dose distribution for the majority of radionuclides
- Specifically the meteorological conditions are: a Monin-Obukhov length of 0 (representing Category D), a wind speed of 3 m s⁻¹, boundary layer depth of 800 m and rainfall rate of 0.1 mm hr⁻¹ for the duration of the release

Conclusions

- Variability in critical group dose attributable to varying meteorological conditions is extremely large for a 30 minute release
- Dose distributions exhibit a plateau region where a large number of different meteorological conditions give rise to similar critical group doses
- Further investigations are needed to determine whether this is true for any distance downwind of the release, for other sites and for other dispersion models

