

Clean Air for Europe

Stefan Jacobi European Commission DG Environment, Unit C1

Clean Air for Europe

- AAQ framework and daughter directives
- National Emission Ceilings
- vehicle emission and fuel quality standards (Auto Oil programmes)
- stationary sources (LCP, solvents, IPPC,...)

Development of CAFE

European Commission - DG Environment

 Discussion paper circulated in 1998 on need for new, integrated framework for AQ policy covering all sources

- "Thematic strategy" concept developed in context of 6EAP
- CAFE Communication COM(2001)245 adopted May 2001
- 6th EAP adopted July 2002

- Continuing problems with air pollution, especially particulate matter and ozone
- Increasing evidence of adverse health effects
- Need to update and improve projections and modelling
- Difficulty in achieving limit values (especially NO₂ and particulate matter)

Legal and Political Basis

European Commission - DG Environment

ষ্ঠ 6th EAP requires:

ন্থ thematic strategy on air pollution to be adopted not later than July 2005

a requirement to follow a "knowledge-based approach"

a level of AQ must not give rise to significant negative impact on environment and health

Thematic Strategy

European Commission - DG Environment

 not really defined in 6th EAP, but something like a White Paper

 will set goals and priorities for action, and be accompanied/followed by legislative proposals as appropriate

- WG on Implementation
- WG on Particulate Matter review of Position Paper on PM final draft available
- WG on target setting and policy advice
- CAFE Steering Group

Progress so far (1)

- WHO Systematic Review of Health Effects first results received: spring 2003
 second round of questions: spring 2004
- Contractor (HASA) chosen to undertake baseline scenario and integrated assessment modelling (RAINS): work well under way
- JRC model intercomparison "City Delta" to improve knowledge of urban background levels

Progress so far (2)

- EEA study looking at street canyons (SEC) trying to deal with the local level
- Transport Emission Modelling (TREMOVE) highly detailed transport modelling
- Cost-Benefit Analysis (CBA) impacts, cost, benefits of cleaner air
- RAINS peer review

Timetable 2003 Q4

- report on dose-response from WHO
- stakeholder consultations on baseline
- RAINS peer review to begin
- TREMOVE model design and preliminary baseline
- PM workshop, major stakeholder consultation
- Contracts launched on ex-post evaluation of policies and short-term measures + emerging techniques

Timetable 2004 H1

- final reports from WHO on health effects of air pollution
- Position Paper on PM finalised
- baseline projections of emissions and air quality to 2020
- targets for emissions, air quality and effects to be used as basis for integrated assessment modelling

Timetable 2004 H2

- First set of integrated assessment model runs (policy option scenarios)
- Integration of City Delta results into RAINS
- first report from RAINS peer review
- discussion of scenarios in WG TSPA and WG
 PMD
- interim reports on ex-post evaluation
- final report on emerging techniques

Timetable 2004 H2

- SG discussion on policy options scenarios
- Completion of TREMOVE model development
- CBA phase 1 final report
- RAINS review final report
- reports on ex-post evaluation and emerging techniques

• Further work on CBA and TREMOVE

- drafting of CAFE integrated policy advice
- drafting and adoption of Thematic Strategy

Deadline for Thematic Strategy:
 22. July 2005

Modelling and technical work in CAFE well underway

 Discussions starting on policy options (<u>measures</u> and <u>instruments</u>)

Use of models in ambient AQ legislation; FWD Art. 6

 AAQ shall be assessed throughout the territory of the Member States

measurements may be supplemented by models

 combination of measurment and modelling allowed below the UAT

Use of models in ambient AQ legislation; e.g. 1. DD I

• Art. 7 in combination with Annex VII specifies:

- minimum number of sampling points if fixed measurement is the sole source of data on concentrations
- can be reduced by supplementary assessment such as modelling

Use of models in ambient AQ legislation; e.g. 1. DD II

 Data Quality Objectives: uncertainty requirements

- for measurement: gases (1) 15 % PM10 25 %

Use of models in ambient AQ legislation; e.g. 1. DD III

Definition of uncertainty

for measurement:

expanded uncertainty

according to "Guide to the Expression of Uncertainty of Measurements"

Use of models in ambient AQ legislation; e.g. 1. DD IV

- Definition of uncertainty
 - for models:

"maximum deviation of the measured an calculated concentration levels, over the period considered by the limit value, without taking into account the timing of the events"

Improving provisions

European Commission - DG Environment

Study launched to

- provide information on the current use of models in the context of the first DD
- reviewing uncertainties
- laying down minimum requirements
- defining algorithm for the determination of model uncertainties

Current use of models I

European Commission - DG Environment

Questionnaire: 20 responses out of 25 MS

- 11use models
 - 9 for compliance checking
 - 7 for plans & programmes
- large variety,
 no two countries use the same model

Current use of models II

European Commission - DG Environment

most commonly modelled: NO₂ and PM₁₀
 (30 and 33 models)

- Two main approached
 - "nested" set of models at different scales
 - Cindividual models, rely on appropriate background data

Review uncertainties I

European Commission - DG Environment

Information provided

 on input data:
 on output

<50 % ≈ 75 %

• input data • emission • emission • 10 - 30 % $PM_{10} \approx 50 \%$ • meteorology • 10 - 25 %

Review uncertainties II

European Commission - DG Environment

- Output data:
 - hourly LV > 50 % range 30 - 95 %
 - daily LV range

>40 % 20 - 60 %

- annual LV $\approx 30\%$ Frange 10-60%

Review uncertainties III

European Commission - DG Environment

• General observation

uncertainties for PM₁₀ (input and output data) significantly larger than for other pollutants

(no surprise...,

Minimum requirements I

European Commission - DG Environment

o component

sufficient input data (meteorological data, emission inventories, background conc.) PM: attempt to account for the whole mass, including secondary particulates

• applicability

temporal and spatial scale must be appropriate for the location and limit value for which the model is applied

• validation

each model application should be validated, documented and peer reviewed. Coding and calculations should be checked as the quality of the input data

• verification

checks the uncertainty of the model output. Where possible each model application should be compared with independent measurement data

 No general algorithm for determination of model uncertainty yet defined

- good overview on the use of models,
 "fairly good" insight in the uncertainties
- indication of deficiencies in a number of key areas

- uncertainties of input data not known in many cases. If reported: thoroughly assessed or based on expert judgement?
- uncertainties of modelled output unknown in many cases.
- model validation widespread though missing in a few cases

- secondary PM not included in about 30 % of the models
- sources of coarse particles and resuspesion are missing from some models
- Nitrogen chemistry (NO₂/NO_x) not defined in about 20 % of cases

Further improvement of provisions on the use of models

- General algorithm for the determination of model uncertainties
- Harmonisation of models used in the context of EU ambient AQ legislation

Thank your for your attention

Clean Air for Europe