Application of PMSS, the parallel version of MSS, to the micro-meteorological flow field and deleterious dispersion inside an extended simulation domain covering the whole Paris area

Christophe DUCHENNE ${ }^{1}$, Patrick ARMAND ${ }^{1}$, Olivier OLDRINI², Christophe OLRY³ \& Jacques MOUSSAFIR³
${ }^{1}$ CEA, DAM, DIF, F-91297 Arpajon, France
E-mail: patrick.armand@cea.fr - Tel: +33-169264536
${ }^{2}$ MOKILI, F-75014 Paris, France
${ }^{3}$ ARIA Technologies, F-92100 Boulogne-Billancourt, France

MOKilin	HARMO'14 Conference - Kos (Greece)	October 2-6, 2011	1/12

A few words about models \& parallelization

- Micro-SWIFT-SPRAY (MSS) is designed for meteorological flow \& dispersion calculations at local scale taking account of buildings
- PMSS is the parallel version of MSS
$-\mu$ SWIFT \& μ SPRAY independently parallelized to form a sequential suite
- Parallelization is based on MPI programming system with the objectives
o To reduce computing time
o To deal with "giant" computation grids (too large for the memory of one core)
- PNSWIFT (two modes or combination)

1) Divide out time frames between available cores
2) Split horizontal grid into tiles \& allocate each tile to a core

- PSPRAY
- Distribution of numerical particles between cores
- Management of active I inactive tiles
- Load-balancing at a user-defined frequency
- Master core defined for each tile
\Rightarrow Compute concentrations \& deposition at every synchronization step

- $12 \times 10.5 \mathrm{~km}$
- 3 m mesh resolution
- 4,001 x 3,501 nodes horizontally
- 27 nodes vertically between the ground \& a height of $1,000 \mathrm{~m}$ (logarithmic progression)

- Total amount of
~ 380 millions nodes

The case of "all Paris" - Input data

- Topography
- Re-interpolation of the IGN 25-meter resolution digital elevation model on the 3-meter resolution horizontal calculation grid
- Building data
- Use of IGN BD-TOPO® building data (shapefile format)
- 50,000 polygons for the whole Paris area
- Pre-processor SHAFT converts polygons into $\boldsymbol{\sim}$ 600,000 triangular prisms written under an ASCII format
- Meteorological data
- Results of MM5 calculation in which the finest grid centered on France has a 9-kilometer resolution \& 3D wind field is computed every hour
- Pre-processor MM5-to-ARIA extracts vertices for wind, temperature \& absolute humidity on a 12-hour long period (from 09/21/2010 at 19:00)

The case of "all Paris" - Computing resources

- Calculations are done with High Peformance Computing resources of the CEA / Research \& Technology Computing Center (CCRT) http://www-hpc.cea.fr/en/complexe/ccrt.htm
- 47.7 Tflops BULL Itanium cluster with 932 nodes of 8 cores
\Rightarrow More than 7,000 1.6 GHz Itanium cores
- SWIFT \rightarrow Domain splitted in 360 tiles \& calculation uses 361 cores
- SPRAY \rightarrow Two test-cases with the same 3D wind field
- Case A : 20 min . release of a gaseous chemical substance from "place de l'Etoile" (near Arc de Triomphe)
- Case B : $2 \mathbf{m i n}$. release of a radioactive aerosol near "parc des Buttes Chaumont" (in the North-East)

The case of "all Paris" - Case A meteorological data

Extraction near "place de l'Etoile" of ground data (chronology) \& vertical profiles (at different times)

cea
 The case of "all Paris" - Case A dispersion results

Simulated period lasts two hours (release in the first 20 min. of 21,600,000 particles)
HARMO'14 Conference - Kos (Greece)

Ceal The case of "all Paris" - Case B dispersion results

Simulated period lasts two hours (release in the first 2 min. of 10,800,000 particles)
HARMO'14 Conference - Kos (Greece)
October 2-6, 2011
8/12

Simulated period lasts two hours (release in the first 2 min. of 10,800,000 particles)

Parallel-SWIFT performances

- Calculations for a various number of cores to evaluate speedup $S_{n}=T_{1} / T_{n}$ where T_{n} is the execution time for n cores
- PSWIFT speedup is close to ideal for $\mathrm{n}_{\text {cores }}<100$, very good with some hundreds of cores \& continues to grow for $\mathrm{n}_{\text {cores }} \sim 700$

Results for 12 time frames (12 hours)

$\mathrm{n}_{\text {cores }}$	Execution time
121	2 hours
256	1 hour
599	0.

PSWIFT parallelization (few is very efficient

$n_{\text {cores }}$	31	57	91	121	169	225	361	599
Speedup	28	54	82	102	141	184	266	413

Parallel-SPRAY performances

- Performances of PSPRAY are assessed in relation to test-case A
- In this case, 48 tiles at most are active at the same time \Rightarrow Calculations are performed with 49 cores or more
- Speedup is defined with $\mathrm{n}_{\text {ta max }}=\mathrm{N}_{\text {ta max }}+1$ and $n_{\text {ta moy }}=N_{\text {ta moy }}+1$ where $N_{\text {ta max }}$ is the max. Nr and $\mathrm{N}_{\text {ta moy }}$ the average Nr of active tiles in the calculation

$$
\mathrm{S}\left(\frac{\mathrm{n}-\mathrm{n}_{\text {ta moy }}}{\mathrm{n}_{\text {ta max }}-\mathrm{n}_{\text {ta moy }}}\right)=\frac{\mathrm{T}_{\mathrm{n}_{\text {ta } \max }}}{\mathrm{T}_{\mathrm{n}}}
$$

- PSPRAY speedup depends on release scenario \& input options (tiles size, load-balancing...)
- In this case, speedup is close to ideal for $\mathrm{n}_{\text {cores }}<150$
- PSPRAY speedup doesn't increase for $\mathrm{n}_{\text {cores }}>250$ as there are too many communications bet. cores
- For $n_{\text {cores }}=150$, the calculation duration is $\sim 2 h$ due to the huge amount of numerical particles (21.6 M)
- When the number of released particles goes down, the execution time significantly decreases
($\left.\mathrm{n}-\mathrm{n}_{\text {ta } \operatorname{moy}}\right) /\left(\mathrm{n}_{\text {ta max }}-\mathrm{n}_{\text {ta moy }}\right)$ ratio
HARMO'14 Conference - Kos (Greece)

General conclusions

- PMSS allows to compute atmospheric dispersion on huge urban domains
- Calculated concentrations are very precise \& relevant inside each street
- Depositions on ground, walls \& roofs have the same precision
- Health impact can be assessed as post-processing
- PSWIFT parallelization very efficient due to few communications between cores
- PSPRAY evaluation of speedup is more difficult as it depends on input data
- PSPRAY speedup is quite good except for high numbers of cores \Rightarrow Optimization of MPI procedures should improve calculation time \& efficiency
- Promising performances for PMSS future operational use on extended built areas
- Automatic PNSWIFT forecast at the micro-scale from meso-scale weather forecast (e.g. 12-hour forecast on all Paris obtained in ~ 1.5 hour using a 128-core cluster)
- Then, PSPRAY can be activated on demand, in case of an emergency, to compute dispersion \& health impact in a short time (less than ten minutes)

