IRSIN INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Faire avancer la sûreté nucléaire

FluxSAP 2010 experimental campaign over an heterogeneous urban zone Part 2: quantification of plume vertical dispersion during a gas tracer experiment using a mast and a small tethered balloon

Denis Maro¹, Isabelle Calmet², Patrice Mestayer³, Mathieu Goriaux¹, Didier Hébert¹, Olivier Connan¹, Basile Letellier¹, Pauline Defenouillère¹, Jean-Michel Rosant², Vera Rodrigues²

¹Laboratoire de Radioécologie de Cherbourg-Octeville (LRC), IRSN, Cherbourg, France ²Laboratoire de Mécanique des Fluides (LMF), UMR CNRS 6598, École Centrale de Nantes, France ³Institut de Recherche en Sciences et Techniques de la Ville (IRSTV), FR CNRS 2488, Nantes, France

> HARMO 14 Monday, October 3rd, 2011

¤ Context & Objectives

- Need of experimental campaign due to a lack of available field data on vertical plume dispersion in urban environment.
 - The first objective of this experiment is to better understand and quantify the vertical dispersion of the plume in an urban area as a function of the atmospheric turbulence.
 - The second objective is to assess atmospheric dispersion models and footprint models in urban area.
- Here we report the original methodology used and an intercomparison with three Gaussian models, two from the first generation (Briggs-urban; Doury) and one from the second generation, ADMS 4.0.

- Field tracer experiments using SF_6 : 30 emissions and measurements between May 18 and 27, 2010, in the city of Nantes.
- Distance from the source to the sampling systems: 20 to 1150 m.

\bowtie Methodology : source of SF₆

HARMO 14 - Kos, Greece

4

✷ Methodology : sampling under captive balloon for the long distances

¤ Results and discussion: meteorological conditions

Distance from emission (m) (min/ave/max)	U (m s ⁻¹) (min/ave/max)	u. (m s ⁻¹) (min/ave/max)	H (W m ⁻²) (min/ave/max)	Pasquill stability class (number of occurrence)
20/356/1150	2.3/3.5/5.2	0.3/0.6/0.9	17/154/299	B(9), C(9), D(7)

• The campaign started with anticyclonic conditions (May 18) and ended with a depression system (May 27).

• Started with unstable atmospheric stability (B) and ended with neutral atmospheric stability (D).

9

• Intercomparison with three Gaussian models, two from the first generation (Briggsurban; Doury) and one from the second generation, ADMS 4.0.

$$ATC = \frac{\int_{t_0}^{t_1} X(M,t).dt}{\int_{t_0}^{t_1'} q(t).dt}$$

- X(M,t): SF₆ concentration (m³ m⁻³), at point M;
- q(t): SF₆ release rate (m³ s⁻¹);
- t'₀, t'₁: time of beginning and end of source emission;
- t_0 , t_1 : time of beginning and end of measurement at M.

Results and discussion: typical evolution of the concentrations on the site and typical vertical profile of the ATCs over the terrain

Context and objectives | Methodology | Results and discussion | Conclusion **¤** Results and discussion: comparison using Briggsurban model

Context and objectives | Methodology | Results and discussion | Conclusion X Results and discussion: comparison using Doury model

Context and objectives | Methodology | Results and discussion | Conclusion Results and discussion: comparison using ADMS 4.0 model

¤ Results and discussion: benchmarking models

Model	Number of ATC values above 10 ⁻⁸ s m ⁻³ (total: 107)	Average ratio (measurement / prediction)	FAC 2 (%)	FAC 5 (%)
Briggs-urban	99	35	57	77
Doury	69	91	16	43
ADMS 4.0	99	51	29	55

$$FAC2: \frac{1}{2} \le \frac{C_p}{C_0} \le 2 \qquad FAC5: \frac{1}{5} \le \frac{C_p}{C_0} \le 5 \qquad \begin{cases} - & C_p: \text{ ATC predicted.} \\ - & C_o: \text{ ATC observed.} \end{cases}$$

• In our case the best predictions are with Briggs-urban, then ADMS 4.0 and Doury.

- A new methodology has been developed to quantify the plume vertical dispersion in a complex urban area: SF_6 emission, sampling on a mast or tethered balloon.
- The results has been compared with three Gaussian models, two from the first generation (Briggs-urban; Doury) and one from the second generation, ADMS 4.0: Briggs-urban best fitted the data.
- In the next future, a Large Eddy Simulation model ARPS (Advanced Regional Prediction System) will be used to estimate the concentration and the scalar fluxes of pollutants.
- To quantify the scalar fluxes and assess footprint models, Relaxed Eddy Accumulation (REA) will be developed and used during the next experimental campaign (FluxSap2012).

