

A Method for Targeting Chemical Samplers For Facility Monitoring in an Urban Area

Paul E. Bieringer

Scott Longmore, George Bieberbach, and Tom Warner

National Center for Atmospheric Research, USA Science and Technology in Atmospheric Research, USA

October 3, 2011

Air Quality Monitoring in Urban Locations

(Where Should Instrumentation Be Placed?)

- Common problem for many applications
 - Facility protection
 - Emissions monitoring
- Assessments and sensor placement analyses rely heavily on transport and dispersion (T&D) modeling
- Challenges
 - Adequate model fidelity
 - Representative meteorological data set
 - Capture sensor characteristics
 - Adaptable to varying sampling duration, time, season, etc.

2-m Anthrax Dosage Simulation Washington DC

A Tradeoff Between Solution Fidelity and Representing the Full Range of Weather Conditions

Urban Chemical Sampler Placement

(Analysis Methodology)

Possible to Have Both High Fidelity T&D and Representative Weather Conditions

Urban Chemical Sampler Placement

(Analysis Methodology)

<figure><section-header>

Dispersion Models

21-Year Global Climate Database

NCAR (Climate Four Dimensional Data Assimilation System (CFDDA))

21-Year Global Climate Database

(Developed to Support T&D Modeling Applications)

- Global database
 - 21 Year (1985-2006)
 - 40 km horizontal resolution
 - 1 hour temporal resolution

21-Year Global Climate Database

(Captures Variability in Variables Relevant to T&D)

KMHK – Manhattan Kansas Regional Airport

Urban Chemical Sampler Placement

(Analysis Methodology)

Dispersion Models

Detection Maps

(Analysis Domain)

(Determining Representative Weather Conditions)

- Self-Organizing Maps (SOM) technique
 - Neural network pattern recognition and classification
 - Tuned for variables of interest Winds, Surface Sensible Heat Flux, Humidity
 - Physically consistent patterns
 - Frequency of occurrence of patterns
 - Date/time for most representative day
 - 200 nodes selected to capture outlier events

Global Climate Data Base – 183,960 Records

Surface Sensible Heat Flux (200 Records)

(SOM Lattice Maps)

HARMO14 - Kos, Greece 3 October 2011

11

(SOM Lattice Maps)

Wind velocity (V) on Daytime period - Insolation Nighttime period - Cloudiness reference height of 10 m (m/s) Strong Moderate Slight Thinly overcast <= 3/8 cloud A - B В $V \le 2$ Α A - B в С Е F $2 \le V \le 3$ С D Е в B - C $3 < V \leq 5$ D D D С C - D $5 < V \le 6$ D D D С D 6 < V

Pasquill Stability Classification Node Map utilizing 10m velocity and incoming solar radiation.

Stability Classification

*Based on: Pasquil (1961), Venkatram (1995), Mohan and Siddiqui (1998)

NCAR/RAL - National Security Applications Program

HARMO14 – Kos, Greece 3 October 2011

Weather Pattern Classifier NCAR (SOM Frequency of Occurrence and Representative Date)

SOM Lattice Node Identifiers

0	1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18	19
20	21	22	23	24	25	26	27	28	29
30	31	32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47	48	49
50	51	52	53	54	55	56	57	58	59
60	61	62	63	64	65	66	67	68	69
70	71	72	73	74	75	76	77	78	79
80	81	82	83	84	85	86	87	88	89
90	91	92	93	94	95	96	97	98	99
100	101	102	103	104	105	106	107	108	109
110	111	112	113	114	115	116	117	118	119
120	121	122	123	124	125	126	127	128	129
130	131	132	133	134	135	136	137	138	139
140	141	142	143	144	145	146	147	148	149
150	151	152	153	154	155	156	157	158	159
160	161	162	163	164	165	166	167	168	169
170	171	172	173	174	175	176	177	178	179
180	181	182	183	184	185	186	187	188	189
190	1	192	193	194	195	196	197	198	199

NCAR (Representative Date and Time for Each Weather Pattern)

01/13/85 17:00	01/14/85 00:00	01/30/92 09:00	01/30/92 11:00	11/14/92 11:00	01/21/90 08:00	01/21/90 03:00	01/12/85 19:00	01/19/92 00:00	01/12/85 15:00
12/26/97 07:00	01/09/92 08:00	11/28/90 14:00	03/07/93 14:00	01/21/90 15:00	01/21/90 11:00	12/02/04 16:00	11/22/04 05:00	12/05/02 20:00	12/05/02 19:00
01/16/85 20:00	12/21/85 04:00	12/28/85 20:00	12/04/89 19:00	12/29/85 04:00	12/31/85 16:00	01/05/85 15:00	12/06/02 06:00	12/06/02 03:00	01/25/85 22:00
12/15/85 08:00	12/21/85 12:00	01/03/03 21:00	11/07/85 00:00	01/01/86 01:00	12/31/85 22:00	11/17/97 15:00	12/16/86 08:00	12/18/93 09:00	01/25/85 18:00
11/30/88 03:00	11/29/88 11:00	11/28/90 02:00	12/05/89 00:00	11/26/00 21:00	11/26/00 11:00	11/17/97 18:00	12/01/04 09:00	12/16/86 04:00	12/18/93 06:00
11/29/88 22:00	01/08/92 23:00	11/21/97 20:00	11/06/85 17:00	11/26/00 16:00	02/12/93 17:00	12/19/86 22:00	01/08/87 04:00	11/23/87 05:00	11/15/92 05:00
02/13/85 23:00	12/12/89 22:00	02/06/00 20:00	10/09/92 18:00	10/02/95 15:00	11/03/85 15:00	12/25/86 15:00	01/06/87 23:00	01/07/87 03:00	10/16/00 05:00
10/10/92 00:00	10/08/96 21:00	10/08/96 19:00	09/28/87 17:00	08/27/87 16:00	11/03/85 18:00	12/25/86 20:00	10/19/85 01:00	09/16/98 03:00	08/02/97 03:00
10/10/92 01:00	10/09/96 00:00	08/23/85 20:00	08/19/97 17:00	08/07/86 17:00	09/09/97 18:00	09/09/97 21:00	09/15/98 23:00	10/17/86 01:00	08/20/85 02:00
10/09/96 02:00	10/22/99 23:00	06/13/87 16:00	08/07/86 16:00	08/18/91 18:00	08/31/95 20:00	08/31/95 22:00	08/18/97 00:00	08/21/90 01:00	08/19/85 02:00
10/09/96 08:00	10/24/94 12:00	08/07/86 14:00	08/30/97 15:00	08/31/95 17:00	08/19/85 18:00	08/19/85 20:00	08/20/90 22:00	08/21/90 00:00	08/24/90 01:00
10/09/96 10:00	09/07/97 12:00	08/31/95 14:00	08/19/85 15:00	08/20/90 17:00	08/20/90 19:00	09/13/97 21:00	09/13/97 23:00	08/24/90 00:00	08/21/89 01:00
07/17/92 10:00	07/17/92 11:00	08/31/95 12:00	08/26/97 14:00	08/21/90 15:00	08/21/90 17:00	09/10/91 19:00	08/20/89 20:00	08/20/89 22:00	08/21/89 00:00
08/31/95 10:00	08/19/85 11:00	08/21/90 12:00	08/21/90 14:00	08/07/93 15:00	08/07/93 17:00	08/20/89 19:00	08/20/89 21:00	09/06/97 22:00	09/07/97 00:00
08/31/95 09:00	08/10/93 10:00	08/21/90 11:00	10/17/86 12:00	08/07/93 12:00	08/20/89 16:00	09/27/95 18:00	10/08/98 20:00	09/19/01 22:00	09/19/01 23:00
08/19/85 09:00	10/17/86 09:00	08/07/93 09:00	09/27/95 11:00	11/11/01 13:00	09/06/99 15:00	09/06/99 18:00	09/19/01 20:00	09/02/86 21:00	10/12/85 23:00
08/19/85 07:00	08/21/90 08:00	08/20/89 08:00	10/24/89 09:00	11/11/01 11:00	10/20/94 12:00	11/11/01 16:00	09/02/86 17:00	10/12/85 17:00	02/26/90 16:00
08/09/98 06:00	08/26/97 06:00	08/21/89 07:00	11/11/01 08:00	12/13/94 08:00	02/18/89 18:00	01/05/93 13:00	07/21/95 15:00	08/13/85 14:00	08/16/91 12:00
08/06/85 07:00	09/05/87 06:00	08/20/89 06:00	08/08/93 06:00	11/19/90 05:00	02/18/89 23:00	01/05/93 00:00	01/05/93 07:00	09/09/87 14:00	09/09/87 13:00
08/14/86 06:00	08/06/85 06:00	08/21/89 05:00	08/21/89 04:00	11/29/85 04:00	12/12/00 22:00	12/07/03 09:00	11/07/93 16:00	11/07/93 14:00	09/07/99 14:00

(Example: Node-190, Highest Frequency Pattern)

Date and Time: 08.14.1986 - 06:00

o Boulder, CO USA

Urban Chemical Sampler Placement

(Analysis Methodology)

(Urban Wind Flow Models)

- Quick Urban Industrial Complex (QUIC) dispersion modeling system
 - Developed by Los Alamos National Laboratory, USA
 - Based on the Röckle (1990) formulations
 - Utilized building geometries from Boulder, CO, USA
 - Provides "Building-Aware" wind flow and building wind loading pressures

•Denotes infiltration/exfiltration points (eg. windows, doors, etc.) — NCAR/RAL - National Security Applications Program

(CONTAM Interior Dispersion Model)

- Utilized the United States (US) National Institute of Standards and Technology (NIST) CONTAM model
 - Indoor air transport and dispersion model
 - Wind pressures acting on building exterior
 - Buildings are modeled as idealized zones with appropriate flow paths
- Provides
 - Chemical concentrations in a interior zone
 - Chemical material flow directions and infiltration/exfiltration rates

•Denotes infiltration/exfiltration points (eg. windows, doors, etc.) — NCAR/RAL - National Security Applications Program

(CONTAM Interior Dispersion Model)

Source Term: 5-minute Release of a Volatile Gas From the Kitchen

NCAR/RAL - National Security Applications Program

NCAR

(QUIC-PLUME Exterior Dispersion)

(Example: QUIC-PLUME Exterior 5 Hour Dosage)

NCAR/RAL - National Security Applications Program

NCAR

Urban Chemical Sampler Placement

(Analysis Methodology)

Dispersion Models

Dosage Map

Dosage Distributions

(Frequency Scaled Dosage)

NCAR/RAL - National Security Applications Program

HARMO14 - Kos, Greece 3 October 2011

(Dosage Distributions)

24

(Probability of Detection (POD) Calculations)

(Probability of Detection Maps)

Conclusions

- Determining sampler placement in complex urban • environments is challenging
- Demonstrated method meets this challenge
 - Characteristic weather
 - High fidelity modeling solution
 - Tunable

Sampling duration/time Location **Sampler characteristics**

Questions

