

STUDYING THE EFFECT OF STREET GEOMETRY IN PARTICLE CONCENTRATION

J. Garcia, R. Cerdeira, N. Tavares, L. M. R. Coelho

Escola Superior de Tecnologia de Setúbal (EST- IPS), Setúbal - Portugal

OBJECTIVES

- To know influence of street geometry in the PM₁₀ concentration in a street in Barreiro (Portugal)
- To understand the influence that the geometry of the street plays in the in the dispersion of particles inside the street.
- To study the combined influence of the direction of the wind, the geometry of the buildings and the geometry of the roads.
- To investigate the effect of Urban Street Canyon in particle concentration.

THE MODEL

- Ansys Fluent 12.0 software was used, Workbench was used to build a thetaedrical complex grid.
- A 3D flow simulation with a Lagrangian approach was used.
- The RNG k-epsilon turbulence model was used.
- Wind profile, turbulent kinetic energy and turbulence dissipation rate was introduced as a user defined function.
- 2-way street PM10 car emission rate was considered, using the ADMS-Urban model.
- Simulation domain: 715 x 300 m² with 60200 cells

SOME RESULTS

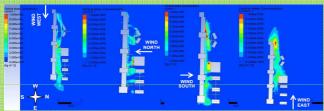


Figure 1- Contours of PM₁₀ concentrations at 1,5m high for disposition A (actual configuration)

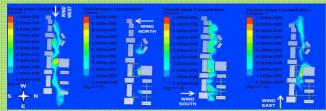
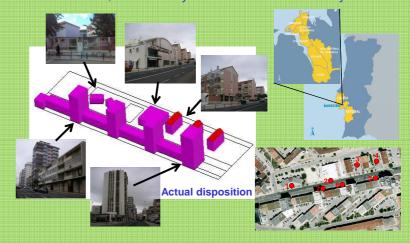
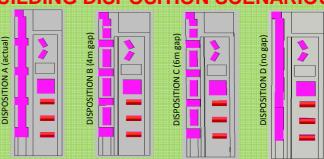


Figure 2- Contours of PM_{10} concentrations at 1,5m high for disposition B (4m gap

3


CONCLUSIONS

• It is possible to reduce PM₁₀ concentrations improving the air quality in the street, only by the alteration of geometry configuration of buildings


- For west wind direction the better concentrations levels are obtained with configuration D, this geometry promotes the dispersion of pollutants as the wind is oriented with buildings.
- For north, south and east wind directions, configuration B is the one that results in lower concentrations. For these wind directions there are no visible improvements in having higher gaps (6m) between buildings instead of 4m gaps.
- The best configuration considering predominant wind direction and frequencies of occurrence is configuration B.

STUDIED DOMAIN

• This study was performed in a street (Av do Bocage) of Barreiro city which is about 40km south of Lisbon, with an area of 34km² and 80000 inhabitants, with industry near the centre and heavy traffic.

BUILDING DISPOSITION SCENARIOUS

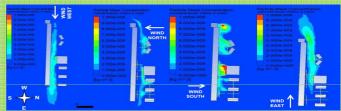


Figure 3- Contours of PM₁₀ concentrations at 1,5m high for disposition D. (no gap)

Table 1- PM₁₀ concentrations at 1,5m high for disposition A (actual real configuration)

Designation	Location	PM ₁₀ Concentration	PM ₁₀ Concentration	PM ₁₀ Concentration	PM ₁₀ Concentration	PM ₁₀ Measurements
		(µg/m³) West wind	(µg/m³) North wind	(µg/m³) South wind	(µg/m³) East wind	(µg/m³) West wind
Point 1	School	21,6	21,2	20,7	22,3	33,0
Point 2	Bingo	23,0	28,6	27,1	27,0	31,0
Point 3	Car park(border)	20,1	20,0	20,1	20,0	29,0
Point 4	Car park (middle)	20,4	20,0	20,1	20,0	29,0
Point 5	High building corner	20,5	20,6	22,7	20,0	27,0
Point 6	Residential building (east)	22,2	21,5	21,9	21,0	28,0
Point 7	Residential building (west)	25,0	20,9	22,5	20,7	28,0
Mean value	1,5m plane (all domain)	20,8	20,5	21,0	21,1	
AQ Index	1.5m plane (all domain)	20.3	20.1	20.1	20.1	

Table 2-PM₄₀ mean concentrations 1,5m high plane for the different configurations and wind directions

West wind		North_wind PM ₁₀ concentrations			PM ₁₀ concentrations				PM ₁₀ concentrations				
PM ₁₀ concentratio	ns												
(µg/m³)	(µg/m³)			(µg/m³)			(µg/m³)						
Conf A Conf B Conf C	Conf D	Conf A	Conf B	Conf C	Conf D	Conf A	Conf B	Conf C	Conf D	Conf A	Conf B	Conf C	Conf D
20,8 20,6 20,6	20,4	20,5	20,2	20,4	20,4	21,0	20,6	20,6	20,8	21,1	20,4	20,9	20,6
ces ded ces ces ces ded ded ces ces ces ded ces ces	000000000000000000000000000000000000000	10000000	9000000	01010000	01010000	10000000	100000000	10000000	100000000000000000000000000000000000000	100000000000000000000000000000000000000	10000000	11 (11 (11 (10)	11 (11 (11 (10)