

COMPUTATIONAL FLUID DYNAMICS STUDY ON TWO-PHASE CO₂ DISPERSION IN A NEUTRAL ATMOSPHERE

Corina Hulsbosch-Dam

TNO, The Netherlands

HARMO 14, 2-6 October 2011, Kos, Greece

Contents

innovation for life

- Carbon Capture and Storage (CCS)
- CFD in atmospheric conditions
- Case description
- Results:
 - ABL
 - Parameter study for release
 - Compare to literature
- Discussion & Conclusions

CCS – Carbon Capture and Storage

Toxicity properties of CO₂

Exposure time (min)	1% lethality (vol% CO ₂)	50% lethality (vol% CO ₂)
1	11	15
10	8	11
30	7	9
60	6	8

Source: S. Connolly and L. Cusco, Hazards from high pressure carbon dioxide release during carbon dioxide sequestration processes, Proc. Int. Symp. Loss Prevention and Safety Promotion in the Process Industry, Edinburgh, 22-24 May 2007

innovation for life

CFD in atmospheric conditions

 Pre-requisite: correctly describe Atmospheric Boundary Layer (ABL) behaviour over domain:

innovation

- Velocity
- Turbulence
- Temperature & pressure (non-neutral ABL)
- Recommendations from COST 732 (neutral ABL, RANS)
 - Computational grid
 - Domain extent and blockage
 - Boundary conditions

Case Description

Test-case: Comparison-case: small scale release large scale release

Test case

Domain size: Source location:

Initial pressure: Initial temperature: Source mass flow rate: Source diameter: Source temperature: Source solid fraction:

300x100x50 m³ 1 m height

100 bar 15 °C 33 kg/s 5 cm 293 – 195 K 0 - 50 mass%

innovation for life

Fluent v12.1

2-phase model: **Discrete Phase Model**

Turbulence model: standard ka

3 cm³ - 120 m³ Cell sizes: Number of cells: 135 000

Boundary conditions:

- Sides:
- Top:
- Inflow:
 - Outflow:
- Bottom:
- symmetry planes wall
- velocity inlet
- pressure outlet
 - wall with wall functions

Variations in test case

Several fraction of solid are used:

	Type of release	T (K)	%mass of solid
А	Gas	293	-
В	Gas	250	-
С	Gas	195	-
D	Gas + solid	195	1
Е	Gas + solid	195	10
F	Gas + solid	195	50

innovation for life

With case F sensitivity studies are performed on the presence of solid particles:

wall boundary conditions

particle size

gravity

CO₂ mole fraction for cases a-f

Variations for sensitivity analysis

Atmospheric Boundary layer: D5

- 2D ABL periodic conditions
- 3D ABL: 2D result at inlet
- Inlet = outlet velocity and temperature profile in 3D
- 2D profile 10% off from theoretical profile, increase mass flow will resolve this

Effect of ABL-modelling on concentration

Top view of CO₂ mass fraction contours

for life

Comparison case

Domain size: Source location:

Initial pressure: Initial temperature: Source mass flow rate: Source diameter: Source temperature: Source solid fraction: 800 x 400 x 200 m³ 5 m height

150 bar 20 °C 5628 kg/s 298 cm 195 K 0 and 64.4 mass%

Fluent v12.1

2-phase model: Discrete Phase Model

Turbulence model: standard ka

Cell sizes: $3 \ 10^{-3} - 5 \ 10^3 \ m^3$ Number of cells: 175 000

Source: T.A. Hill, J.E. Fackrell, M.R. Dubal, S.M. Stiff, Understanding the consequences of CO_2 leakage downstream of the powerplant, Energy Procedia (2010)

Boundary conditions:

- Sides:
- Top:
- Inflow:
- Outflow:
- Bottom:

- symmetry planes
- velocity inlet
- velocity inlet
- pressure outlet
 - wall with wall functions

Resulting volume%

for life

	Fluent vapour	Fluent 150 µm	
200 m	8.9 %	10.4 %	
300 m	6.6 %	7.1 %	
400 m	5.2 %	5.3 %	

- Including particles increases effect distances

Resulting volume%

innovation for life

	Fluent vapour	Fluent 150 µm	CFX vapour	CFX 50 -150 μm
200 m	8.9 %	10.4 %	15.5 %	18.6 %
300 m	6.6 %	7.1 %	11.0 %	12.1 %
400 m	5.2 %	5.3 %	8.2 %	8.1 %

- Including particles increases effect distances (Fluent and CFX)
- No experimental data available for validation

Source Phast and CFX data: T.A. Hill, J.E. Fackrell, M.R. Dubal, S.M. Stiff, Understanding the consequences of CO_2 leakage downstream of the powerplant, Energy Procedia (2010)

Resulting volume%

	Fluent vapour	Fluent 150 µm	CFX vapour	CFX 50 -150 μm	Phast
200 m	8.9 %	10.4 %	15.5 %	18.6 %	11.3 %
300 m	6.6 %	7.1 %	11.0 %	12.1 %	8.1 %
400 m	5.2 %	5.3 %	8.2 %	8.1 %	6.4 %

innovation for life

- Including particles increases effect distances (Fluent and CFX)
- No experimental data available for validation
- CFX over estimates with respect to Phast, Fluent underestimates with respect to Phast

Source Phast and CFX data: T.A. Hill, J.E. Fackrell, M.R. Dubal, S.M. Stiff, Understanding the consequences of CO_2 leakage downstream of the powerplant, Energy Procedia (2010)

Differences in CFD calculations

innovation for life

- Particle size (single value or distribution)
- Description ABL
- Level of turbulence in jet

Conclusions

- Method is shown to perform CFD on dispersion of evaporating particles in atmospheric conditions
- Only verification with integral model and other CFD model is done: good comparisson
- Continue development of CFD for atmospheric dispersion