

3D Modeling of urban environment taking into account the energy exchanges between the buildings and the atmosphere

Yongfeng QU, Maya MILLIEZ, Luc MUSSON-GENON, Bertrand CARISSIMO

HARMO14, October 2011, Greece

Outline

> Introduction

1

2

3

4

5

Equations and models

CAPITOUL field experiment

Simulation results

Conclusions

1. Introduction

1.

3.

- 2. Equations and models
 - CAPITOUL field experiment
 - Simulation results Conclusions

Context and objectives:

- Radiative scheme for mesoscale models are not suited for urban scale CFD studies (3D).
- Model the atmosphere in non neutral stratification in dispersion and risk assessment studies (take into account radiation budget in simulation of flow dynamics in built up areas).
- Develop radiative and thermal schemes adapted to 3D CFD modeling (Milliez 2006).
- Validation based on Mock Urban Setting Test (MUST) experiment (Qu et al. 2011a).
- Numerical study of the thermal effects of buildings on low-speed airflow (Qu et al. 2011b).
- <u>Validation based on Canopy and Aerosol Particle Interactions in Toulouse Urban Layer</u> (CAPITOUL) field campaign.

Introduction

1.

3.

4.

- 2. Equations and models
 - CAPITOUL field experiment
 - Simulation results
 - Conclusions

CFD model

- We perform the simulation with the 3D open-source CFD code Code_Saturne which can handle complex geometry and physics. (www.code-saturne.org)
- The atmospheric module takes into account the larger scale meteorological and the stratification of the atmosphere.
- k-є turbulence closure and a roughness wall law, taking into account stratification.

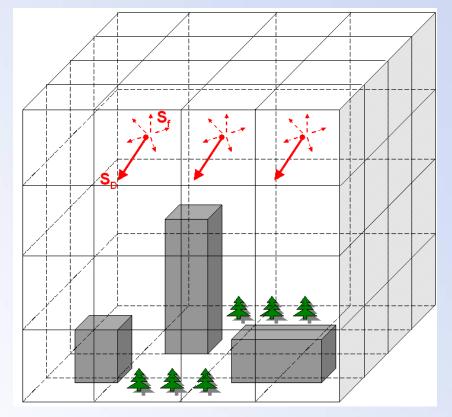
Local heat transfer coefficient :
$$h_f = \frac{\rho C_p u_* \kappa f_h}{\sigma_t \ln(\frac{d+z_0}{z_{0T}}) \sqrt{f_m}}$$

Introduction

1.

3.

- 2. Equations and models
 - CAPITOUL field experiment
 - Simulation results
 - Conclusions


Radiative model

• Discrete Ordinate Method (DOM) (Fiveland, 1984)

Spatial discretization uses the same mesh as the CFD model

Short and long-wave radiation

$$S^{\downarrow} = S_D + S_f + S_e$$
$$S^{\uparrow} = \alpha S^{\downarrow}$$
$$L^{\downarrow} = L_a + L_e$$
$$L^{\uparrow} = \varepsilon \sigma T_w^4 + (1 - \varepsilon)(L_a + L_e)$$

Introduction

1.

3.

- 2. Equations and models
 - CAPITOUL field experiment
 - Simulation results
 - Conclusions

- Hybrid surface temperature models:
 Ground: Force-restore model (Deardorff, 1978)
- $\frac{\partial T_g}{\partial t} = \frac{\sqrt{2\omega}}{\mu_g} Q_g^* \omega (T_g T_{gint})$ $Q_w^* = L^* + S^* Q_H Q_{LE} Q_F$

Buildings walls: Wall thermal model

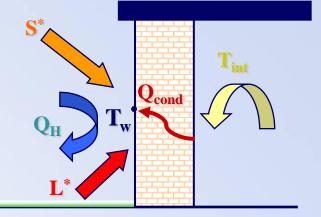
neglected

with
$$\frac{\lambda_w}{e_w}(T_w - T_{wint}) = h_f(T_a - T_w) + \varepsilon_w(L_a + L_e - \sigma T_w^4) + (1 - \alpha)(S_D + S_f + S_e)$$
$$\underbrace{Q_{cond}}_{Q_H} \underbrace{Q_H}_{L^*} \underbrace{L^*}_{S^*}$$

Introduction

1.

3.


4.

- 2. Equations and models
 - CAPITOUL field experiment
 - Simulation results
 - Conclusions

Internal building temperature

Evolution equation (Masson et al., 2002)

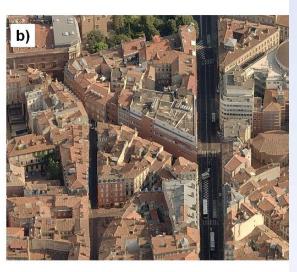
$$T_{\text{int}}^{n+1} = T_{\text{int}}^{n-1}\left(\frac{\tau - \Delta t}{\tau}\right) + \underline{T}\left(\frac{\Delta t}{\tau}\right)$$

Comparisons with measured brightness surface temperature

$$T_{br} = \sqrt[4]{\varepsilon T_{sfc}}^4 + \frac{(1-\varepsilon)L^{\downarrow}}{\sigma}$$

3. CAPITOUL field experiment

Introduction


- 2. Equations and models
 - CAPITOUL field experiment

Simulation results Conclusions

CAPITOUL project

 Canopy and Aerosol Particale Interactions in Toulouse Urban Layer (CAPITOUL) field took place from February 2004 to February 2005. (Masson et al., 2008)

Aerial view of downtown Toulouse, France:

1.

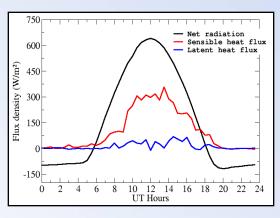
3.

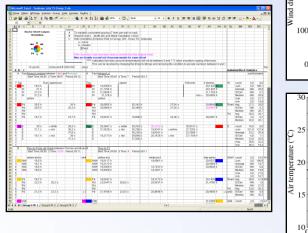
- a) main study area, from Google Maps;
- b) zoom in the selected area a) (yellow contour), from Bing Maps

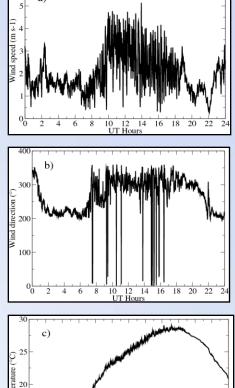
3. CAPITOUL field experiment

Introduction

1.


3.


4.


- 2. Equations and models
 - CAPITOUL field experiment
 - Simulation results Conclusions

CAPITOUL project summary

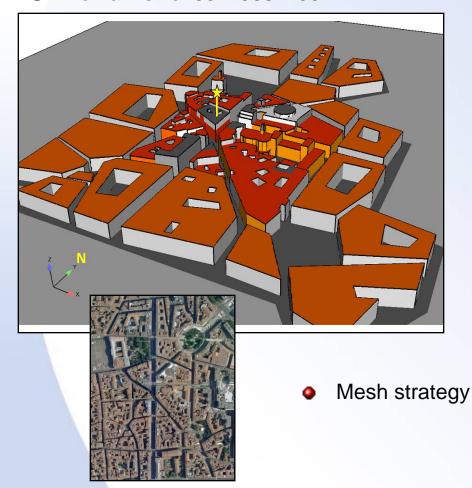
- Study of the energetic exchanges between the surface and the atmosphere was one of the objectives.
- Meteorological data
- Infrared surface temperature measurement
- Hand-held IRT data
- Aircraft data
- Traffic count data

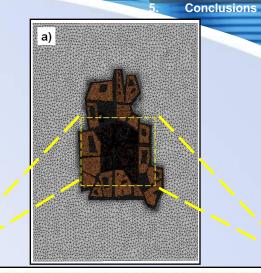
10 12 14 16 18 20

22

4 6

Introduction


1.


4.

- 2. Equations and models
- CAPITOUL field experiment
- Simulation results

Simulation set-up for July 15th 2004

Central site area geometry processed by ICEM CFD
 Domain size: 891x963x200 m

Simulation mesh, total mesh ~1,8 M

Introduction

- 2. Equations and models
- 3. CAPITOUL field experiment
- 4. Simulation results

Conclusions

Simulation for July 15th 2004

Initial and boundary conditions

	Surface albedo α	Surface emissivity ε	Layer	Depth (m)	Material	Heat capacity (10 ⁶ J m ⁻³ K ⁻¹)	Thermal conductivity $(W m^{-1} K^{-1})$
Wall	0.25	0.92	1	0.01	Red bricks	1.58	1.15
			2	0.05			
			3	0.18			
			4	0.05			
			5	0.01			
Roof	0.15	0.90	1	0.01	Red tiles	1.58	1.15
			2	0.05			
			3	0.02	Wood	2.20	0.20
			4	0.01			
Road	0.08	0.95	1	0.01	Asphalt	1.74	0.82
			2	0.04			
			3	0.20	Stone aggregate	2.00	2.1
			4	1.00	Gravel and soil	1.40	0.4

Classification of 4 colors for the buildings surfaces

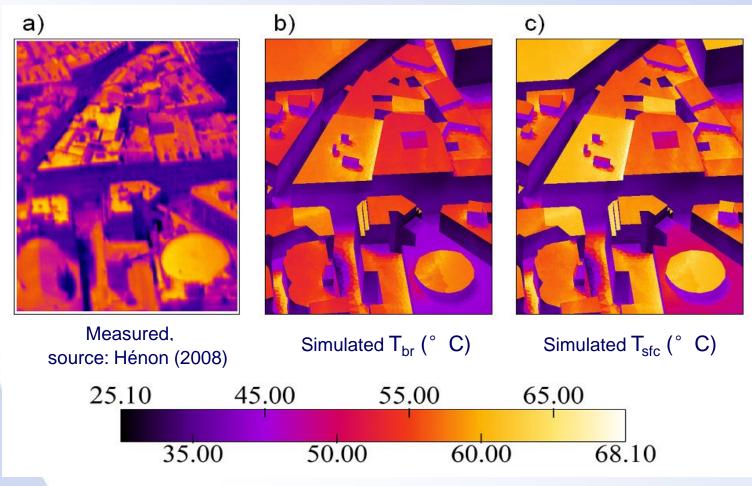
1.

Paint color	albedo
White	0.6
Whitewash	0.5
Rose	0.3
Gray	0.15

(Pigeon et al., 2008)

- Implementation with sereval levels for heat transfer:
- 1) no wind
- 2) h_f constant
- 3) full radiative-dynamical coupling

Introduction


1.

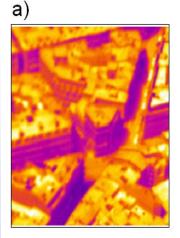
- 2. Equations and models
- 3. CAPITOUL field experiment
- 4. Simulation results

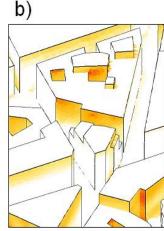
Conclusions

Simulation of July 15th 2004

Thermal infrared (TIR) airborne images 1412 UT during flight 432 (Lagouarde et al. 2010):

Introduction

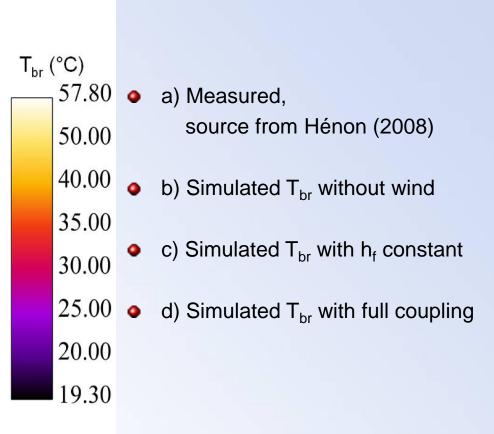

1.


- 2. Equations and models
- 3. CAPITOUL field experiment
- 4. Simulation results

Conclusions

Simulation of July 15th 2004

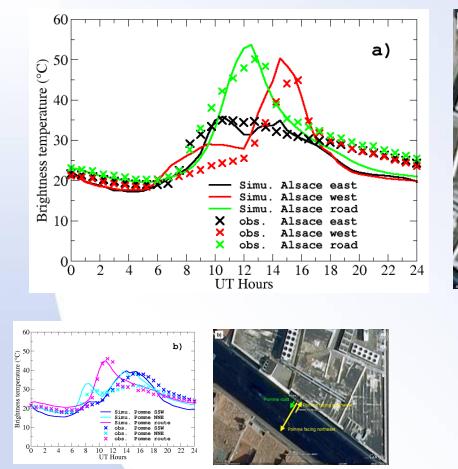
Thermal infrared (TIR) airborne images 11:38 during flight 431(Lagouarde et al. 2010):

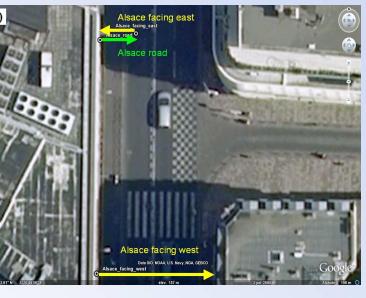


C)

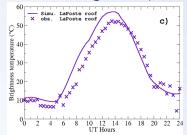
Introduction

1.


4.


- 2. Equations and models
- 3. CAPITOUL field experiment
 - Simulation results

Conclusions


Simulation of July 15th 2004

 Measurement-simulation comparison for diurnal evolution for brightness temperature of different positions of the infrared thermometers

Source: Pigeon (2004)

5. Conclusions 1. Introduction 2. Equations and models 3. CAPITOUL field experiment 4. Simulation results 5. Conclusions

- We have investigated the energy exchanges in a real city with the atmosphere during the CAPITOUL campaign, using new atmospheric radiative and thermal schemes implemented in *Code_Saturne*, and compared it with measurements.
- A pre-processing is realized including the optimization of the complex geometry and creation of a high quality tetrahedral mesh for this study.
- It also requires determining the complex thermal parameters which take into account the actual variability of materials in the district.
- The comparison with IRT airborne images shows the importance of taking into account heterogeneities in materials and geometry to represent the spatial variability of the temperatures in complex urban areas.
- The comparison with the measured diurnal evolution of brightness temperature measurements and model simulations are encouraging fair.

References

• Deardorf, J. W., 1978: Efficient prediction

unace temperature and moisture with inclusion of a layer of vegetation. J. Geophys. Res., 83, 1889–1903

• Fiveland, W. A., 1984: Discrete-ordinates solutions of the radiative transport equation for rectangular enclosure. J. Heat Tran., 106, 699–706

• Hénon, A., 2008: Températures mesurées, modélisées, et observées par télédétection infrarouge, dans la canopée urbaine: modélisation aéro-thermo-radiatif des flux de chaleur urbains. Ph.D. thesis, École Centrale de Nantes, 253 pp., [in French]

Thank you !

Email: yongfeng.qu@cerea.enpc.fr

• Lagouarde, J. P., A. Hénon, B. Kurz, P. Moreau, M. Irvine, J. Voc Toulouse city centre. Remote Sens. Environ., 114, 87–105 er, 2010: Modelling daytime thermal infrared directional anisotropy over

• Masson, V., C. S. B. Grimmond, and T. R. Oke, 2002: Excluation of the Town Energy Balance (TEB) Scheme with Direct Measurements from Dry Districts in Two cities. J. Appl. Meteor., 41, 1011–1026

• Masson, V., et al., 2008: The Canopy and Aerosol Particles Interactions in TOulouse Urban Layer (CAPITOUL) experiment. Meteor. Atmos. Phys., 102, 135– 157

• Milliez, M., 2006: Modélisation micro-météorologique en milieu urbain: dispersion des polluants et prise en compte des effets radiatifs, Ph.D. Thesis, Ecole Nationale des Ponts et Chaussées. 228 pp., [in French, available on line at http://cerea.expc.fr/fr/heses.html

• Pigeon, G., M. A. Moscicki, J. A. Voogt, and V. Masson, 2008: Simulation of fall and winter surfac energy balance over a dense urban area using the TEB scheme. Meteorol. Atmos. Phys., 102, 159–171

• Qu, Y, M. Milliez, L. Musson-Genon, B. Carissimo, 2011: Micrometeorological modeling of radiative and convective effects with a building resolving code, J. Appl. Meteor. Climatol (2011) Vol. 50, No. 8. 1713-1724

• Qu, Y, M. Milliez, L. Musson-Genon, B. Carissimo, 2011: Numerical study of the thermal effects of buildings on low-speed airflow taking into account 3D atmospheric radiation in urban canopy: paper submitted to J. Wind Eng. Ind. Aerodyn.