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Abstract: We use a Lagrangian stochastic micromixing model to predict the concentration fluctuations of a continuous 
release in a neutral boundary layer. We present the computational algorithm that implements the Interaction by Exchange 
with the Conditional Mean (IECM) model and we compare the numerical solutions with the experimental values in order to 
evaluate the reliability of the model. The influence of the source size on the concentration probability density function (PDF) 
in the near and far-field is discussed and some shortcomings of the model are pointed out. 
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INTRODUCTION 
The impact assessment of risks related to the dispersion of flammable gases and toxic substances requires a 
reliable description of the concentration probability density function (PDF) and estimations of the higher order 
moments of the concentration. Recent studies have shown that this can be achieved by means of Lagrangian 
stochastic micromixing models which simulate the effects of molecular diffusivity on the pollutant concentration 
fluctuations. Cassiani et al. (2005a) and Postma et al. (2011a) simulated the dispersion of a point source in the 
neutral boundary layer and compared the concentration fluctuation intensity with the experimental profiles 
provided by Fackrell and Robins (1982). The dispersion in the convective boundary layer (Cassiani et al., 2005b) 
and in the neutrally stratified canopy flow (Postma et al., 2011b) was also analysed. To our knowledge the first 
four concentration moments are numerically estimated only in homogeneous turbulence (Sawford, 2004), 
whereas the other authors restrict the analysis to the mean and standard deviation of the concentration field. Here 
we take advantage of recent wind tunnel experiments (Nironi et al., 2013) and we evaluate the accuracy of a 
Lagrangian stochastic micromixing model in estimating the first four concentration moments in a fluctuating 
plume in neutral boundary layer. 
 
MODEL EQUATIONS 
The temporal evolution of the velocity and position Xi of an ensemble of independent fluid particles is governed 
by the following differential stochastic equations: 

 
                                           (1) 

                                (2) 
  

where Ui’ is the Lagrangian velocity fluctuation related to the Eulerian mean velocity , dζj is an incremental 
Wiener process (Gardiner, 1983) with zero mean and variance dt; ai and bij are,  respectively, the deterministic 
and stochastic-diffusive acceleration components, which are determined according to the well-mixed condition 
(Thomson, 1987). 
The micromixing model takes into account the effects due to the molecular diffusivity. Each particle is 
characterised by a concentration C that evolves following the IECM model: 
 

 

(3) 

where is the mean scalar concentration conditioned on the local position and velocity. The scalar 
micromixing time tm represents the temporal scale of molecular diffusion. The parameterisation of tm follows the 
formulation proposed by Cassiani et al. (2005a) and it is assumed to be proportional to the time scale of the 
relative dispersion process depending on velocity variance, kinetic energy dissipation rate, source size and 
particle flight time. 
 
NUMERICAL MODELLING 
The coupling between the Lagrangian stochastic model (equations (1) and (2)) and the micromixing model 
(equation (3)) is performed by the code SLAM (Safety Lagrangian Atmospheric Model). The micromixing time 
and conditional mean concentrations are estimated during a pre-processing step, computing the trajectories of a 
small ensemble of particles released at the source location. Afterwards, we consider the molecular diffusivity 
effects on the concentration fluctuations by simulating the influence of the background particles. This strategy 
allows us to obtain a multitude of concentration values and, therefore, suitably approximate the concentration 



PDFs. The numerical experiments follow the approach of Cassiani et al. (2007); at the initial time-step a set of 
particles is uniformly distributed in the whole computational domain and each particle moves in accordance with 
the equations (1) and (2). During this motion the particle concentration changes (equation (3)) assuming a large 
variety of values that allows us to compute the high order statistics. In order to increase the solution accuracy, a 
time-averaging is performed. A suitable choice of the boundary conditions allows us to correctly reproduce the 
dispersion of the passive scalar and keep constant the number of particles during the simulations: 

 top and lateral boundaries, the particle velocity and position are perfectly reflected and the 
concentration is absorbed; 

 ground, the particles are elastically reflected and they conserve their concentration; 
 inflow/outflow, periodic conditions are applied to the particle position and the absorption of the 

concentration is imposed; 
 source, the influence of the source is taken into account by marking the near-source particles with a 

scalar concentration Csrc: 

 

(4) 

where Q is the source mass-flow,  is the horizontal mean velocity at the source location (xs, ys, zs), 
0 is the source size and r2 = (y-ys)

2 + (z-zs)
2 is the distance from the particle to the source in yz-plane. 

The computational algorithm is made of the following steps: 
1. Pre-processing (equations (1) and (2)):  

 simulation of the trajectories of an ensemble of particles released at the source location; 
 estimate of the conditional mean concentration  and micromixing time tm. 

2. Simulation of the concentration fluctuations (equations (1), (2) and (3)): 
 instantaneous release of a uniform particle distribution in the whole domain; 
 initialization of the particle properties (X, U, C); 
 main time loop: 

o loop on all the particles: 
 update particle velocity and position; 
 apply boundary conditions; 
 update particle concentration; 

o update cell-centred statistics; 
 update time-averaged statistics. 

Such micromixing model requires the tuning of some free parameters in order to get a suitable accuracy in the 
solutions (Postma et al., 2011a): the Kolmogorov constant C0, that influences the Lagrangian integral scales, the 
Richardson constant Cr and the micro-mixing constant µt, that affect the micromixing time scale, and the initial 
source distribution 0, that depends on the source diameter. It is worth noting that this approach requires a large 
amount of computational resources due to the elevated number of particles. 
 
NUMERICAL EXPERIMENTS 
 
Experimental set-up 

 
Figure 1: Non-dimensional vertical profiles of a) mean longitudinal velocity, b) r.m.s of the velocity components, c) 
turbulent kinetic energy dissipation rate (u* is the friction velocity). 

 
The numerical model is tested against a new experimental data set investigating the dispersion of a passive scalar 
emitted from a continuous point source in a neutral boundary layer (Nironi et al., 2013). The velocity field is 
characterised by the profiles shown in Figure 1 and obtained through Hot Wire Anemometry measures.  
The experiments provide the concentration PDFs at increasing distance from the source location through 
measures of a passive scalar (ethane) concentration performed by means of a Flame Ionization Detector (FID). 



The source is located at zs/δ=0.19 and two diameters, ds/δ, are taken into account, 3.75e-3 and 7.5e-3 (δ is the 
boundary layer depth). 
 
Computational set-up 
The numerical experiments concerned a preliminary study of the influence of the discretization parameters. We 
performed some simulations on a uniform grid, varying the cell dimensions and the time-step length, and we 
verified that the solutions are affected by neither the time-step length nor the space discretization (Figure 2). 
Table 1 summarizes the parameter values adopted in the simulations in order to have a satisfactory agreement 
with the experimental measures. 

 
   
 
 

   Table 1: Free parameter values adopted in the simulations. 

  
    

 
 
 
 

Figure 2: Non-dimensional concentration standard deviation M2
* vs. y/δ at the source height and x/δ=0.625;   

(a) Δt = 1.0e-3, Δx = 0.02, Δy = Δz = 5.0e-3; (b) Δt = 5.0e-4, Δx = 0.02, Δy = Δz = 5.0e-3;  
(c) Δt = 1.0e-3, Δx = 0.01, Δy = Δz = 3.0e-3. 

 
Results 
The measures show that the source size does not affect the mean concentration whereas it influences the higher 
order moments (Fackrell and Robins, 1982). This influence is significant in the near-field (Figure 3) and it 
gradually becomes negligible for increasing distances from the source (Figure 4). 
In order to test the reliability of the model, we computed the first four centred concentration moments and we 
compared them with the corresponding experimental values after a suitable adimensionalisation: 
 

 

(5) 

where u∞ is the velocity at the boundary layer height, Nc and Cc are the number of particles and the mean 
concentration in the cell, respectively, and Cp is the particle concentration. 
In the near-field (Figure 3) the model is able to reproduce the influence of the source size on the concentration 
fluctuations showing a good agreement with the experimental values; in particular, Figures 3b-3d shows that the 
differences in the concentration PDFs due to the source diameter are correctly simulated. In the far-field 
(x~500÷1000 ds) the model suitably simulates the negligibility of the source size on the computed standard 
deviation and the agreement with the experimental values is satisfactory (Figure 4a and 4b). On the contrary, 
some discrepancies occur on the higher order moments: the numerical solutions overestimate the experimental 
results and some differences due to the source diameter persist (Figures 4c and 4d). Indeed the loss of influence 
of the source size is delayed with respect to the experiments. If we define the relative difference between the 
computed moments for the two source sizes S1 (ds/δ=7e-3) and S2 (ds/δ=3.75e-3) as 
  

 

(6) 

we observe that Drel reduces from x/δ =3.75 and x/δ =5 (Figure 5) as shown in Table 2.   
 

Table 2: Relative difference between the third and fourth moments at different distances x/δ. 
 
 
 

C0 0 Cr µt 
velocity 
classes

5.0 √(2/3)ds 0.3 0.6 3 x 3 x 3 

x/δ Drel M3
* Drel M4

*

3.75 0.17 0.36 
5.0 0.12 0.29 



The reasons for this delay can be reasonably attributed to the shortcomings of the micromixing model that can be 
related to the formulation of the micromixing time scale.  

  

 
Figure 3: Non-dimensional concentration statistics vs. y/δ evaluated at the source height and x/δ = 0.625. 
 
 

 
Figure 4: Non-dimensional concentration statistics vs. y/δ evaluated at the source height and x/δ = 3.75. 



  
Figure 5: Non-dimensional third and fourth moments (M3

* and M4
*) of the concentration vs. y/δ evaluated at the 

source height and x/δ = 5. 
 
CONCLUSIONS 
The ability of the Lagrangian stochastic micromixing model SLAM to estimate the concentration fluctuations 
was investigated. We simulated the dispersion of a fluctuating plume produced by a continuous release from a 
point source in the neutral boundary layer and we compared the numerical results with a new experimental data 
set. The numerical solutions show that the model is able to correctly simulate the concentration statistics in the 
near-field, reproducing the source size effects on the high order moments. In the far-field the numerical and 
experimental values of the mean and standard deviation of the concentration are in good agreement. Differently 
the model overestimates the third and fourth moments with respect to the experiments. Moreover, the 
experimental profiles show that the source size influence vanishes in the far-field after x~500÷1000 ds, whereas 
in the numerical simulations such effect is delayed and it occurs at longer distances. This behaviour shows the 
shortcomings of the model and the need of further developments in order to improve the accuracy of the 
solutions. 
The main shortcoming of such model is the high computational cost. The large number of particles, required to 
get a suitable accuracy in the numerical solutions, produces a large request of RAM and elevated CPU time; that 
limits the applicability of the model to real scale problems in complex geometries.  
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