PRTRVal: A SOFTWARE TOOL FOR THE VALIDATION OF EUROPEAN POLLUTANT RELEASE AND TRANSFER REGISTER EMISSIONS DATA

<u>María Dios</u>, Marta Morán, Fabio Carrera, César Pombo, José Antonio Souto, Juan José Casares ¹

Agustín Díaz, Aurora Sáez²

- ¹ Department of Chemical Engineering University of Santiago de Compostela
- ² Laboratorio de Medio Ambiente de Galicia Consellería de Medio Ambiente, Territorio e Infraestructuras Xunta de Galicia

15th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes 6-9 May 2013 Madrid, Spain

XUNTA DE GALICIA

Overview

- Introduction
- Methodology
 - > Objectives
 - Description of PRTRVal
 - Scope
- Results and discussion
 - Analysis of the E-PRTR emissions
 - PRTRVal: Analysis of E-PRTR emissions errors
 - Validated PRTR inventory vs. EMEP
- Conclusions

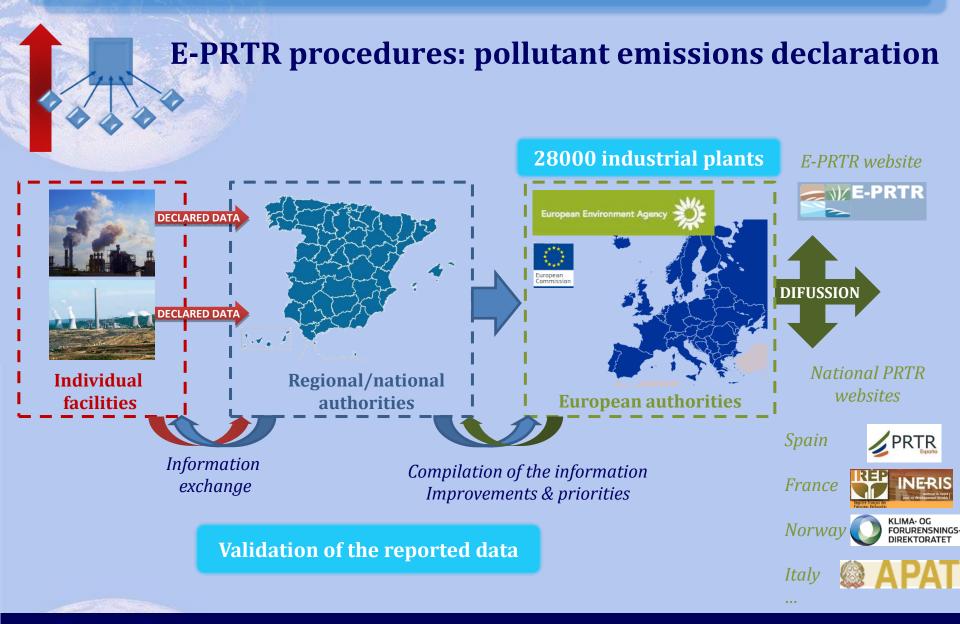
Introduction (I)

EMEP and PRTR emissions inventories

Convention on Long-range Transboundary Air Pollution Co - operative programme for monitoring and evaluation of the long-range transmissions of air pollutants in Europe

- 2001 EUROPEAN POLLUTANTS EMISSIONS REGISTER (EPER)
- 2008 EUROPEAN POLLUTANT RELEASE AND TRANSFER REGISTER (PRTR)
- Norwegian Sea PARCE ISLANDS FARCE ISLANDS FROE ISLANDS FR

E-PRTR


- 91 pollutants
- Point and diffuse sources
- Normal operation and accidental releases
- Off-site transfers of waste

Energy sector

- Production and processing of metals
- Mineral industry
- Chemical industry
- Waste and wastewater management
- Paper and wood production processing
- Intensive Livestock and aquaculture
- Food and beverage sector
- Other activities

Obligatory declaration

Introduction (III)

Introduction (IV)

Bottom-up vs. top-down approaches

BOTTOM-UP

Detailed and local calculation Total emissions = Σ Individual emissions

Higher accuracy (if validated) Higher difficulties in emissions calculation

E-PRTR INVENTORY

TOP-DOWN

Global calculation Desagregation of emissions to local level by means of distribution patterns

and evaluation of the long-range 00000 **Scientific purposes** 500

> 20 4**0** 60 80

Convention on Long-range Transboundary Air Pollution

co - operative programme for monit

Lower difficulties in emissions calculation

Lower accuracy

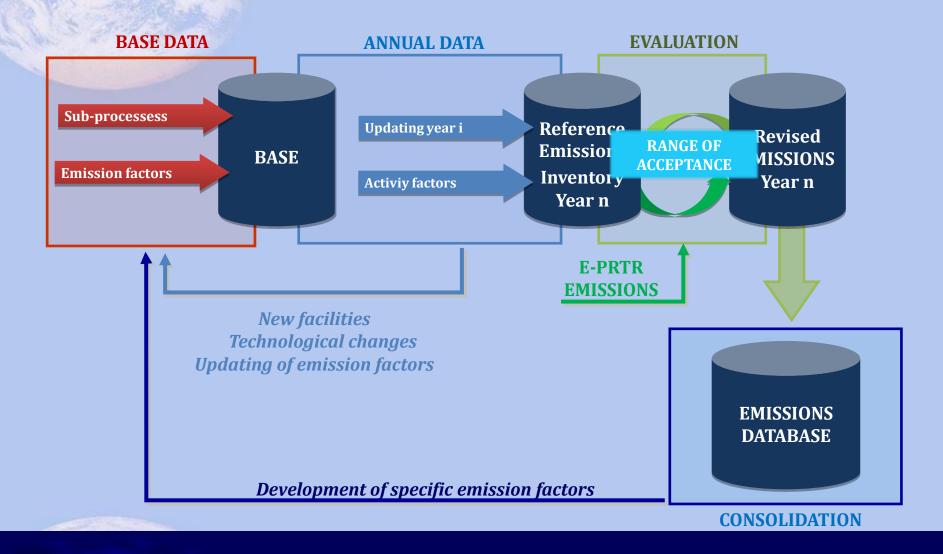
EMEP INVENTORY

Methodology: Objectives

PRTRVal: Software tool for E-PRTR register validation

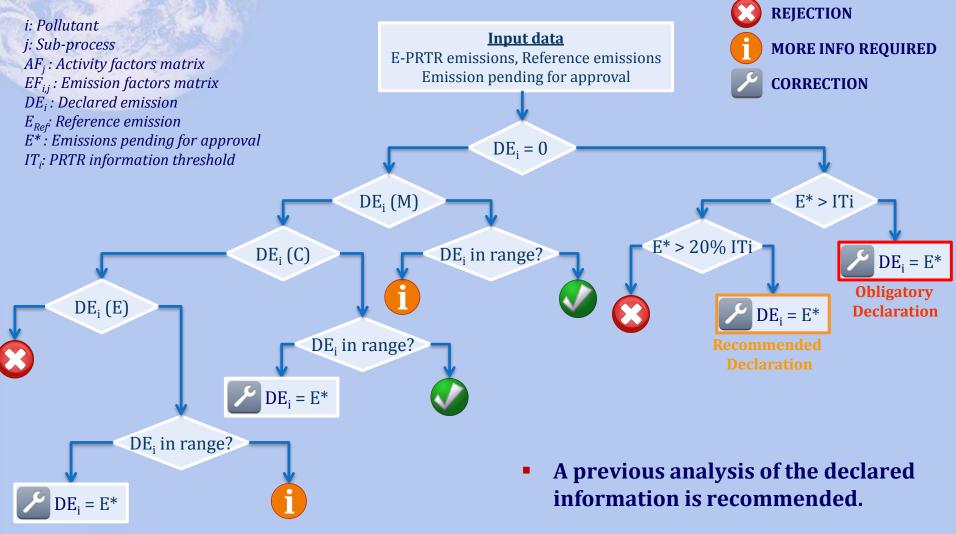
Methodology for the systematic validation of PRTR register

pni	PRTRval Support Tool for the Validation of E-PRTR					
	Home	Log in				
Data Administration Support Tool for the Validation of E-PRTR:						
acilities	This tool is designed to support the validation of atmospheric emissions to be included in galician PRTR register.					
Demand Emissions	Description of the sections included:					
missions Validation	Data Administration: The declared data from the facilities can be upload and managed to their validation. Emissions Validation: The emissions validation procedure is carried out in this section. Reports:					
Calculate Emissions						
teports						
	Select Working Year					
	Universidade de Santiago de Compo tela © 201					


- Windows, Linux & Mac OS
- Data base: MySQL server 5.1.52
- JSTL, JSP, Servlets and Java Beans
- NetBeans IDE 6.8
- Java 1.6.0_22
- Web server: Apache Tomcat 6.0.20
- Internationalization support

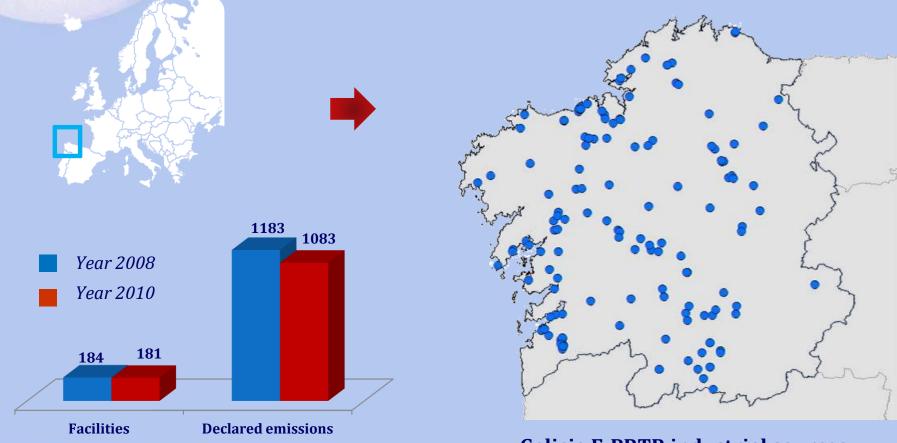
BEFORE emissions data were submitted to correct possible mistakes

✓ AFTER as a verification procedure prior to the use of the emissions


Methodology

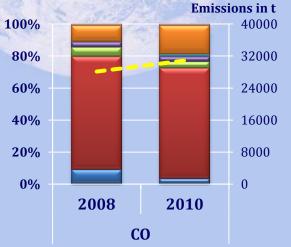
Validation Procedure: E-PRTR vs. Reference Emissions Inventory

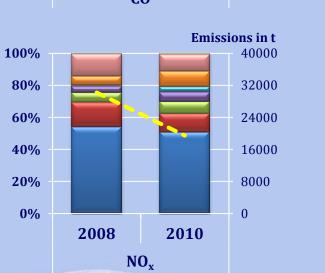
Methodology: PRTRVal (III)

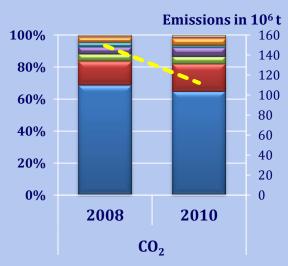

Validation procedure. Validation Flow Diagram

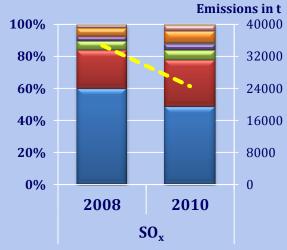
APPROVAL

Methodology: Scope

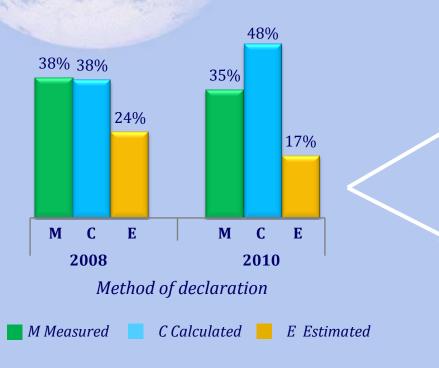

Galicia (NW of Iberian Peninsula) PRTR emissions for 2008 & 2010



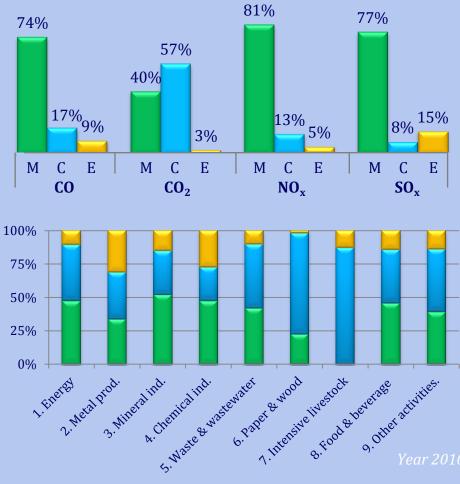

Galicia E-PRTR industrial sources


Results and Discussion

Galicia E-PRTR emissions



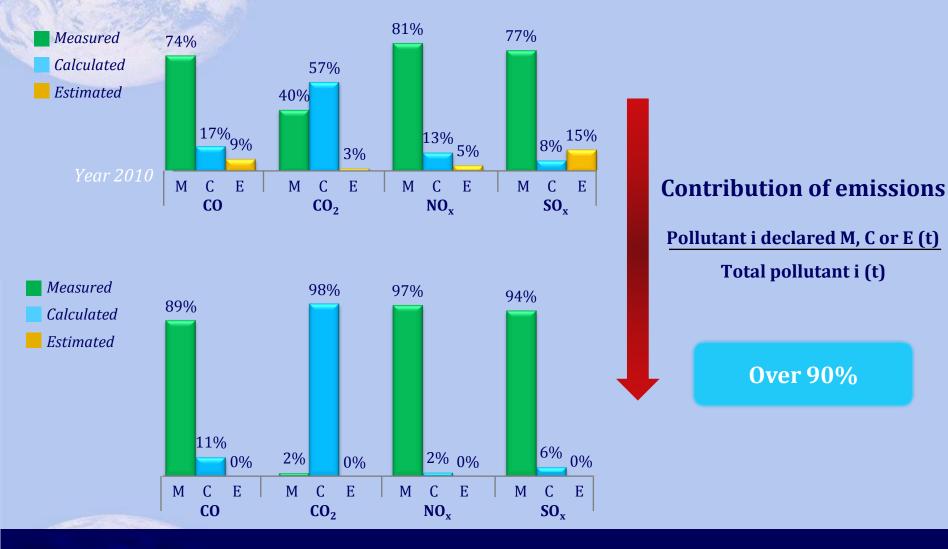
Distribution by E-PRTR sector



Results and Discussion

Galicia E-PRTR emissions

Method of declaration



 The number of estimated pollutants decreased, although a slight decrease in measurements was also detected

Results and Discussion

Galicia E-PRTR emissions

Method of declaration

Results and Discussion: Applying PRTRVal

PRTRVal : Analysis of E-PRTR errors

Definitions

Classification of errors	 1.1. The facility wrongly declares not to be affected by E-PRTR 1.2. Non-declared sources (chimneys, diffuse sources, etc.) 1.3. Omission of pollutants with over threshold emissions.
Type of Error	 2.1. Lack of operation parameters: production, concentrations 2.2. Emission calculations not correctly justified. 2.3. Lack of information about measurement methods. 2.4. Absolutely lack of information.
Type 1Errors related to non-declaration	3.1. Misidentification of emission with f.i. concentration
Type 2 Lack of information	3.2. Units error.3.3. Error in the combination of several emission sources.
Type 3Calculation errors	3.4. Specific errors: i.e., identify PM10 as PST, or COT as NMVOC.3.5. Wrong emission factor.
Type 4 Minor errors	3.6. General calculation error.
Type 5 Null / Zero declaration	 4.1. Limit of detection (LOD) of the experimental method is not reached. The emission is declared as 10-50% of the LOD value. 4.2. Variation of the LOD among measurements.
Type 6 Other	4.3. Wrong declaration of the emissions method code (M/C/E). 4.4. Experimental measurements not representative of other year.
	5. No measurements or calculations were set up: Declaration of emission as zero is directly rejected
	6. Uncorrected errors after the submission of complementary information. The reported emissions are directly rejected.

Accepted deviation range: 33 to 300% of the reference emissions

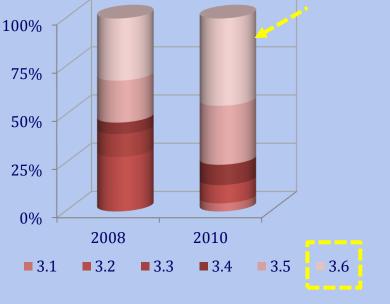
Results and Discussion: Applying PRTRVal

PRTRVal : Analysis of E-PRTR errors

Global results

• A general improvement can be noticed due to accumulated experience in the declaration procedure and, also, a higher environmental conscience.

Results and Discussion: Applying PRTRVal


PRTRVal : Analysis of E-PRTR errors

Specific results

Type 2. No information

Type 3: Calculation errors

General calculation error

 All these errors could be easily avoided by the facilities with a previous and careful verification of the information submitted

Results and discussion

Validated E-PRTR inventory vs. EMEP inventory

EMEP Industrial sectors = S1 + S3 + S4: All the facilities should be included

S1 Combustion in energy and transformation industries

S3 Combustion in manufacturing industry

S4 Production processes

- Industrial plants
- **O** Farms
- 50 x 50 km² EMEP grid

Results and discussion

Validated E-PRTR inventory vs. EMEP inventory

E-PRTR limited industrial inventory:

Only facilities above production capacity thresholds; therefore, in theory,

E-PRTR emissions < Industrial EMEP < Total EMEP

SO_x

(49, 16

Checking SO_x 2008 emissions:

E-PRTR

EMEP

Repsol YPF refinery (A Coruña)	6800 t	
Meirama Power Plant	4160 t	
Sabón Power Plant	1500 t	
Ferroatlántica Sabón	360 t	
E-PRTR (Over threshold info)	12766 t	
Industrial EMEP	8977 t	
Total EMEP	10148 t	

Results and discussion

Validated E-PRTR inventory vs. EMEP inventory

E-PRTR limited industrial inventory:

Only facilities above production capacity thresholds; therefore, in theory,

E-PRTR emissions < Industrial **EMEP** < Total **EMEP**

Checking SO_x 2008 emissions:

RTR	CEDIE (Chemical industry)	19.5 t	2
E-P	E-PRTR	19.5 t	
			SO,
EP	Industrial EMEP	368.2 t	
EM	Total EMEP	455.8 t	
			••• (52,15)

Conclusions

- ✓ A methodology for the validation support of the E-PRTR inventory is presented, based on a bottom-up reference inventory
- ✓ This methodology was coded in PRTRVal software tool, and tested over Galicia region (NW of Iberian Peninsula) in 2008 and 2010 years
- ✓ Applying PRTRVal, most of E-PRTR declared emissions by these facilities required corrections: 75% in 2008 and 55% in 2010
- ✓ A trustworthy verification by the facilities of their declared emissions, before being submitted, could avoid most of these corrections
- ✓ Experience gained along the years with E-PRTR and, previously, EPER and IPPC inventories, reduced errors in declared emissions. Also, a growing environmental conscience of the industrial sector improves these results.
- ✓ Strong inconsistencies were found between validated E-PRTR and EMEP inventories
- ✓ With PRTRVal, European extension of E-PRTR inventory validation should be feasible, with benefits to other European emissions inventories

Conclusions

As most of E-PRTR data are based on measurements (either continuous or sporadic) and other specific information, E-PRTR validated data can improve the accuracy of the emissions inventories currently applied in European air quality modeling, i.e.,

http://www.presaxio.es

http://www.meteogalicia.es

MARIA DIOS NOCEDA maria.dios@usc.es

XUNTA DE GALICIA

15th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes 6-9 May 2013 Madrid, Spain