

QUALITÉ DE L'AIR

Particulate source apportionment using two chemical transport models over French South Eastern coastal area

Damien Piga¹, Alexandre Armengaud¹, Guido Pirovano²

¹ AirPACA, Air Quality Observatory in Provence-Alpes-Côte-d'Azur, Marseille, France ² RSE S.p.A, Research on Energy Systems, Milano, Italia

surveillance de la qualité de l'air PROVENCE - ALPES - CÔTE D'AZUR

The APICE project

<u>APICE</u>: Common Mediterranean strategy and local practical <u>A</u>ctions for the mitigation of <u>Port, Industries and Cities Emissions (<u>www.apice-project.eu</u>)</u>

Project financed by MED 2007/2013 (from July 2010 to February 2013)

Arrow Main objective: to define local adaptation plan and common strategy to improve air quality

www.airpaca.org

PACA

...

The APICE project

To design efficiency actions ⇒ knowledge about source contributions

Source apportionment studies

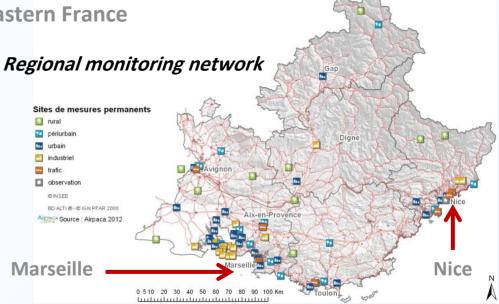
- using monitoring campaigns (PMF, CMB)
- using numerical models (CAMx, CHIMERE)

⇒ Intercomparison and evaluation

...

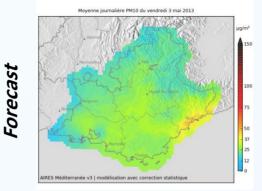
www.airpaca.org

IT PACA


Presentation of AirPACA

AirPACA: regional air quality survey in south-eastern France

- Air quality monitoring
- Air quality forecast
- Air quality information


Modeling activities:

- Emission inventory
- Daily forecast
- Scenario evaluation

...

www.airpaca.org

PACA

Source apportionment study

Two approaches to assess contribution of emission sources

• **Receptor models** \rightarrow Positive Matrix Factorization (PMF), Chemical Mass Balance (CMB)

<u>First step</u>: intercomparison campaign in Marseille with all partners participation (winter period)

<u>Second step</u> : long monitoring campaign in Marseille

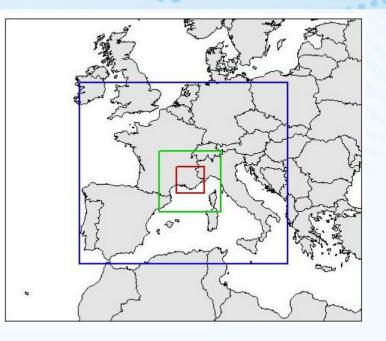
<u>Chemical Transport models</u> → CHIMERE, CAMx

<u>First step</u>: simulation of the intercomparison campaign over Marseille area using CHIMERE <u>Second step</u>: set-up of CAMx model over the regional area thanks to the participation of Guido Pirovano <u>Third step</u>: intercomparison of different source apportionment approaches

The modeling system

Simulation area: 3 nested domains

- European domain (27 km)
- Large South France domain (9 km) FRSE9
- Regional domain (3 km)


Meteorology

• WRF (GFR27 – FRSE9 – PACA3)

Anthropogenic emission data

- EMEP data (GFR27 & FRSE9)
- Local emission inventory (PACA3)
- Natural emission data
 - MEGAN (GFR27 FRESE9 PACA3)

Air PACA

Boundary and initial conditions

- Meteorological fields
 - GDAS NCEP (GFR27)
 - WRF output (FRSE9 & PACA3)
- Chemical fields
 - LMDz-INCA2 (GFR27)
 - CHIMERE output (FRSE9 & PACA3)

Common input for CHIMERE and CAMx over PACA3 domain

The modeling system

Emission sectors involved in the source apportionment approaches

Name	Description	Color
Industry – Energy	Public power, heating plants, industry, waste,	
Residential – Tertiary	Biomass combustion, residential plants, commercial plants,	
Natural	Windblown dust, sea salts, biogenic,	
Agriculture	Agriculture, forest,	
Maritime transport	Shipping, loading and unloading processes, maritime activities	
Non-road transport	Inland waterways, railways, air traffic,	
Road transport	Cars, trucks, motorcycles, road abrasion,	
External	Long-range transport from outside of the domain	

Simulation period

Pollutants studied

Focus on particles concentrations : PM₁₀ and PM_{2.5}

...

- Winter period: February 2011
- Summer period: August 2011

CHIMERE model and zero-out approach

Starting equation

C°total = a.energy-industry + b.residential + c.natural + d.agriculture + e.maritime + f.non road + g.road + h.boundary conditions

Removing each emission sector, we have the following matrix system: A.X = B where X is a concentration $C^{\circ}(0 industry - energy)$

 $A = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 1 \end{bmatrix} \qquad X = \begin{bmatrix} a \\ b \\ c \\ d \\ e \\ f \\ g \end{bmatrix}$ C° (0 résidential) $C^{\circ}(0 natural)$ $C^{\circ}(0 a griculture)$ в = $C^{\circ}(0 \text{ maritime})$ $C^{\circ}(0 non road)$ $C^{\circ}(0 road)$ C° (0 boundary conditions)

Contributions are given by:

 \rightarrow contribution for industry/energy : A = a / Σ (a, b, c, ..., h) \rightarrow contribution for residential :

 $B = b / \sum (a, b, c, ..., h)$

Reference run is used to estimate the methodology error:

 \rightarrow Error = [C° ref. - Σ (X)] / C° ref.

CAMx model and tracer approach

Using Particulate Source Apportionment Technology (PSAT)

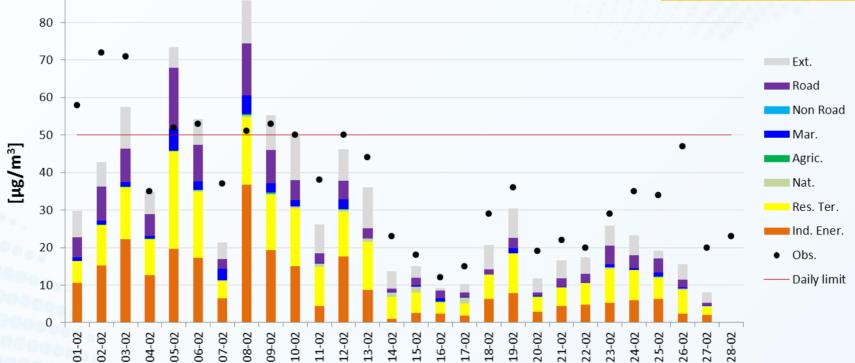
• Same starting equation

C°total = a.energy-industry + b.residential + c.natural + d.agriculture + e.maritime + f.non road + g.road + h.boundary conditions

- Reactive tracer methods
 - Time saving (one simulation)
 - Mass consistency
 - Fully traceable

- Direct source apportionment PMx
 - Primary particle
 - Gaseous precursors
 - Secondary particle

90


Air PACA

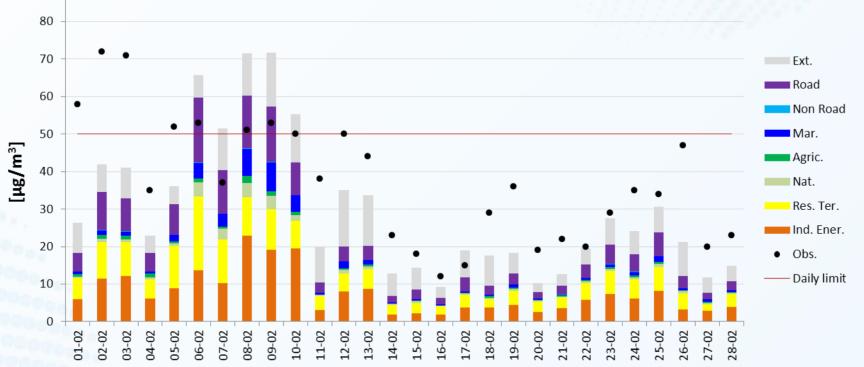
CHIMERE model and zero-out approach

Daily PM₁₀ output for the winter period at the urban background station (Marseille)

...

10 - Titre du diaporama- 00/00/2012

90


Air PACA

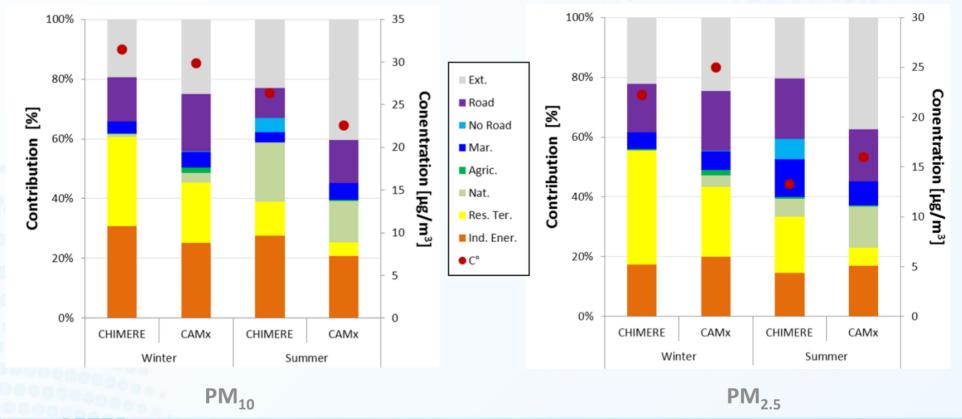
CAMx model and tracer approach

Daily PM₁₀ output for the winter period at the urban background station (Marseille)

...



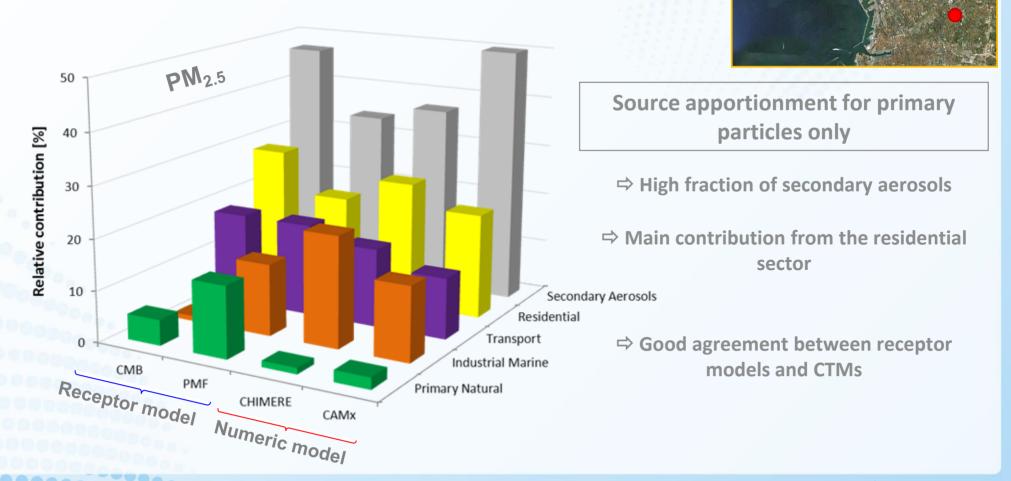
11 - Titre du diaporama- 00/00/2012



Comparison between CHIMERE and CAMx

Results at the downtown station during both winter and summer period

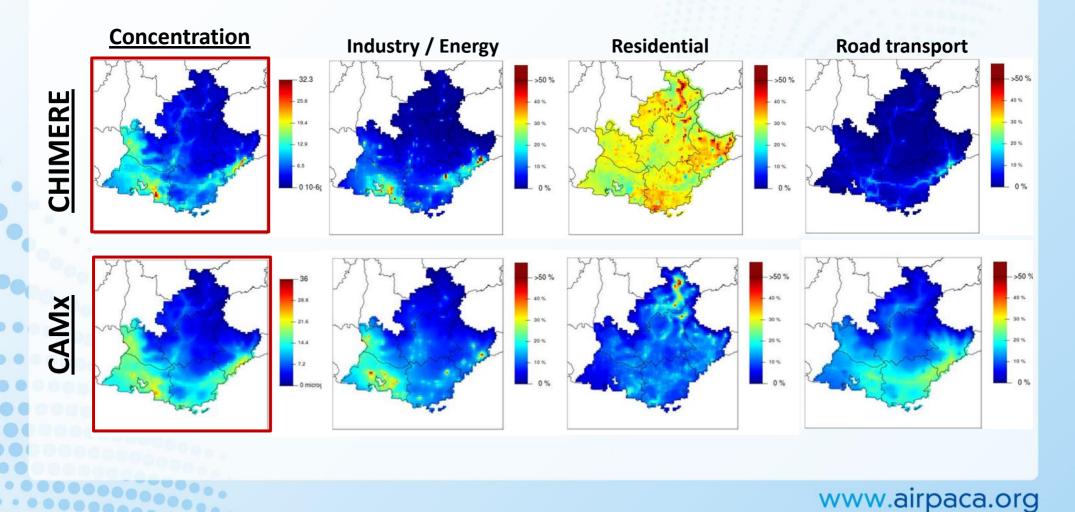
...


12 - Titre du diaporama- 00/00/2012

...

Comparison between numerical models and receptor models

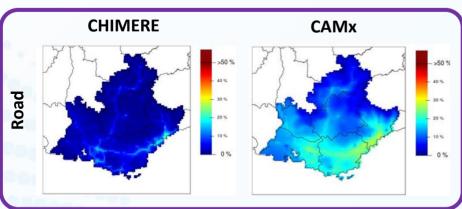
Results at the downtown station during the winter period

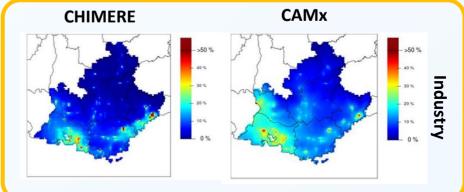


...

Comparison between numerical models at the regional scale

Monthly PM₁₀ output during the winter period at the regional scale


PACA


Residentia

Comparison between numerical models

Significant difference observed at the regional scale

- From CHIMERE with zero-out approach
 - higher contribution from the residential sector
- From CAMx with PSAT approach
 - more important spatial extent for road transport and industry-energy sectors

...

CAMx

CHIMERE

⇒Due to secondary particles source apportionment

Comparison between numerical models

For the zero-out approach

- Removing a source contributing to the emissions of a gas phase precursor could have no effect on the corresponding secondary aerosol species if the removed precursor is not limiting for the conversion reaction
 - Underestimation of contribution for the secondary species (as industry, road transport, ...)
 - Overestimation for the primary species (as biomass burning)

For the reactive tracer approach

- All sources contribute, proportionally to their weight, to secondary species, although they are in excess
 - More realistic representation of contribution for the secondary species
 - Higher dispersion extent for the contribution for the secondary species

⇒ Important contribution from gas phase precursor and chemistry reactions at the regional scale

Comparison between different approaches

- Source apportionment over French south eastern Mediterranean coast using:
 - zero-out approach with CHIMERE
 - reactive tracer with CAMx
- At the large scale, significant differences between approaches due to non-linear system
 - overestimation of local sources with zero-out method
 - overestimation of contribution for primary emissions with zero-out method
 - At the monitoring station, downtown in Marseille
 - comparison between receptor models and numeric models for the primary fractions
 - global good agreement during the winter period (study for the summer period in progress)
 - some differences between receptor models, mainly for the industry sector
 - underestimation of the natural contributions with the numerical models due to a lack for the emissions

Source apportionment study outcomes

- During the winter period:
 - significant contributions from industry-energy, road transport and residential sectors
- During the summer period:
 - significant contributions from natural emissions in a large part of the region
 - inside large cities, road transport and industry-energy remain important
- During the both periods:
 - significant contributions of the long range transport from areas outside of the region area

Perspectives

- Using these outcomes to design efficiency actions to reduce PM concentrations
- Using CAMx with PSAT to apportion PM and precursors among different area

...

Thanks for your attention

Protezione Ambientale del Veneto REGIONE DI VENETO

0 0

000000