H15-129: Large-eddy simulation of flow and dispersion in an heterogeneous urban area: Comparison with field data

V. Rodrigues⁽¹⁾, I. Calmet, M. Francis, D. Maro, D. Hébert, O. Connan, P. Laguionie, M. Maché, T. Piquet, P. Kéravec and J.-M. Rosant

⁽¹⁾ vera.rodrigues@ec-nantes.fr

 15^{th} International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes - HARMO15 Madrid, 9^{th} May 2013

Outline

Introduction

- Motivation
- The VegDUD Project
- FluxSAP data

Methodology

Real urban canopy

- Simulation details
- Dispersion analysis: Mean concentration
- Horizontal plume profiles
- Wind speed and direction
- Air volume in a computational grid
- Grid resolution refinement

Conclusions and perspectives

Motivation

• Urban areas:

- 50% world population
- 75% european population
- Air pollution issues in urban areas
- Pollutant dispersion process:
 - Experimental campaigns (in situ)
 - Wind tunnel experiments
 - Numerical modelling
 - * mesoscale models
 - * high-resolution atmospheric boundary layer models
 - Exchanges between surfaces, urban canopy and atmosphere
 - * obstacles resolving models

Source: JN Jornal de Notícias, Tuesday 12 April 2012

Source: guardian.co.uk, Tuesday 19 March 2013

Research Project

Role of vegetation in Sustainable Urban Development

An approach related to climatology, hydrology, energy management and ambiences

www.IRSTV.fr

FluxSAP data: urban dispersion experiments

- Maro et al. 2011; Francis et al. 2012:
 - Comparison between FluxSAP experimental data and the results of the Briggs' urban Gaussian model
- Maché et al. 2012:
 - Analysis of the influence of the neighbourhood morphological heterogeneity
- Borrego et al. 2012:
 - Application of the ARPS results in order to define the inflow conditions of the micro-scale model VADIS for dispersion purposes
- Rodrigues et al. 2012:
 - Footprint function computation for homogeneous urban canopies using the scalar flux field simulated by the ARPS model

Methodology

- Dispersion and scalar flux modeling:
- Large-eddy simulation atmospheric model ARPS
 - Drag-force approach: Influence of urban canopy on the flow and turbulence dynamics, without resolution of buildings

$$F_{Di} = 0.5C_d(z)\rho u^2(z)a_f(z)$$
(1)

- $* C_d(z)$: sectional drag coefficient, function of built density (λ_p)
- * af(z): frontal area density
- * mean and maximum buildings height
- * extracted with OrbisGIS (OpenSource Software developed by the IRSTV of Nantes) from the French urban database BDTopo[®]
- The scalar diffusion-transport equation:

$$\frac{\partial \overline{C}}{\partial t} + \frac{1}{G} \frac{\partial G \overline{u_j} \overline{C}}{\partial x_j} = \frac{1}{G} \frac{\partial G q_j^{SGS}}{\partial x_j} + \frac{1}{G} S_C$$
(2)

* G: Ratio between the air volume and the total grid volume

Simulation Details

- FluxSAP 2010 and 2012:
 - Suburban district of Nantes (France)
 - Several measurements of meteorological variables
 - SF₆ gas tracer experiment

- Main characteristics of data in analysis:
 - Emission grid: $20 \text{ m} \times 20 \text{ m} \times 1 \text{ m}$
 - Emission period: 09:47 am 09:57 am
 - Emission rate: 5.3g.s⁻¹
 - Measurement period: 09:47 am 10:11 am

Dispersion analysis: Mean concentration

- Mean concentration isocontours for one z-slice:
- Mean concentration isocontours for one y-slice:

- SF₆ concentration measured: $68 117 \ \mu g.m^{-3}$
- Comparison between experimental and simulation results: Slight underestimation

Horizontal plume profiles

• Intersection plume profiles:

- Point-to-point comparison shows that the simulated concentration values are underestimated
- Mean concentration values matching with experimental data are simulated closer to the emission source
- Tracer accumulation in the vicinity of the emission source
- Space- and time-shift of the simulated plume compared with the experimental plume

Horizontal plume profiles

Intersection plume profiles:

• Transit time of the experimental and simulated plumes:

- Point-to-point comparison shows that the simulated concentration values are underestimated
- Mean concentration values matching with experimental data are simulated closer to the emission source
- Tracer accumulation in the vicinity of the emission source
- Space- and time-shift of the simulated plume compared with the experimental plume

Wind speed and direction

• Time evolution of wind speed, at Goss 21 m:

• Time evolution of wind direction, at Goss 21 m:

- Highlight the wind variability in both simulation and experiment
- The MBE is equal to $-0.5~m.s^{-1}$ and the RMSE is about $0.93~m.s^{-1}$
- The flow unsteadiness is difficult to reproduce in the simulation
- Wind speed discrepancies at the beginning of the release explain the space and time-shifting of the simulated plume

Air volume in a computational grid

• Grids with different buildings densities

• The scalar diffusion-transport equation:

$$\frac{\partial \overline{C}}{\partial t} + \frac{1}{\mathbf{G}} \frac{\partial \mathbf{G} \overline{u_j} \overline{C}}{\partial x_j} = \frac{1}{\mathbf{G}} \frac{\partial \mathbf{G} q_j^{SGS}}{\partial x_j} + \frac{1}{\mathbf{G}} S_C$$

• Influence of the buildings volume in the grid

 Taken into account the volume of buildings in a grid causes higher concentrations

Grid resolution refinement

- Influence of the horizontal mesh:
 - Results still show an underestimation of the simulated concentration

 Detailed information about the fraction of buildings in a computational grid

Conclusions and perspectives

• Real urban canopy simulations:

- Systematic underestimation of the simulated concentration
- Space and time-shift of the simulated plume
- Mean wind speed and direction, 24 min averaged, are in good agreement with measurements
- Wind unsteadiness is difficult to reproduce
- ARPS model is suitable for the dispersion study in a real urban canopy under neutral atmospheric stability conditions

• Validation of the simulation results:

- Grid resolution refinement
- Comparison with other models
- Further simulations of different experimental datasets from FluxSAP 2010 and 2012 campaigns

• Application of the presented methodology to determine the footprint function to real urban canopy

Thank you!

Vera Rodrigues

vera.rodrigues@ec-nantes.fr