

Harmo 15, Madrid

May 6-9, 2013

EVALUATION OF THE OPEN ROAD SOURCE MODEL OML-HIGHWAY FOR SEVERAL FIELD DATASETS

<u>M. Ketzel¹</u>, S.S. Jensen¹, T. Becker¹, H. Lorentz², H.R. Olesen¹

and P. Løfstrøm¹

¹Department of Environmental Science, Aarhus University, Denmark, <u>mke@dmu.dk</u> ²Ingenieurbüro Lohmeyer GmbH & Co. KG, Germany

May 6, 2013

Outline

- > Background / Motivation
- > OML-Highway model description
- > Evaluation of the OML-Highway
- > Example of application in Denmark
- > Conclusion

Background / Motivation

- Assessment of air pollution is a requirement in environmental impact assessments (EIA) of new major roads
 - > Protection of human heath (Limit values)
 - > Protection of sensitive nature areas
- > OML-Highway model was developed (2006-2009) to enhance information about air pollution in EIAs of major road projects
- > OML-Highway model applied in EIAs of motorways and other main roads in Denmark since 2010

May 6, 2013

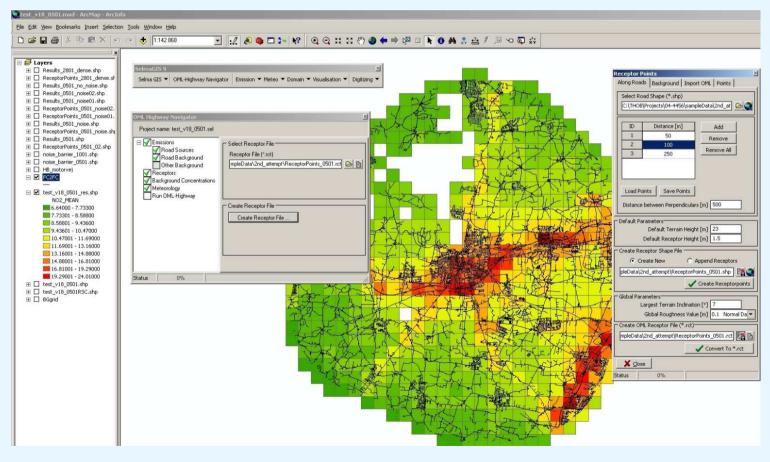
OML-Highway Model

- > Based on OML -Multi
 - > a local-scale Gaussian air pollution model (since 198x)
 - > Using Monin-Obukhov boundary layer scaling (MOST)
 - > Area and point sources
- > Traffic produced turbulence (TPT) is added:
 - > traffic intensity, type of vehicles and speed (as in OSPM model) $\sigma^2 = \sigma^2 + \sigma^2$

$$\sigma_{y,z}^2 = \sigma_{y_a,z_a}^2 + \sigma_{y_0,z_0}^2$$

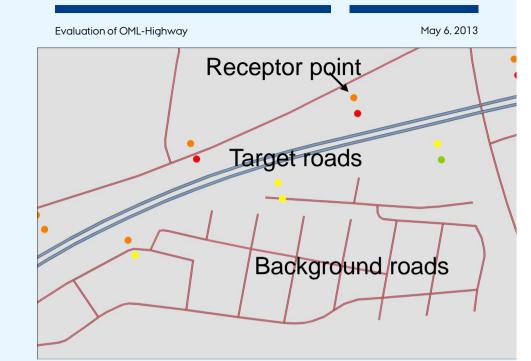
> but decays in an exponential manner with transport time $\sigma_0(t) = \sigma_{\text{initial}} + u_{\text{TPT}} \tau \left[1 - \exp\left(-\frac{t}{\tau}\right) \right],$

where *t* is the transport time (s), τ is the time scale for the decay of TPT (s) and $\sigma_{\text{initial}} = 3.2 \text{ m}$



May 6, 2013

User interface based on SELMAGIS

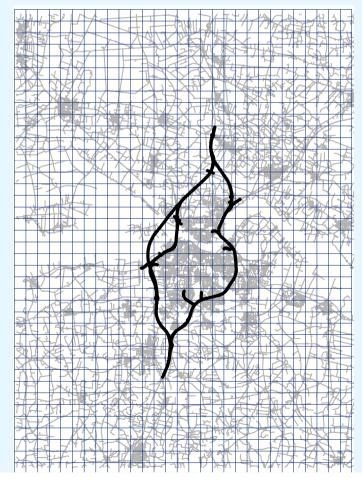

- > SELMAGIS a tool for modelling and visualisation of air quality data based on ArcGIS™
- > OML-Highway is implemented as an extension in ArcGIS™

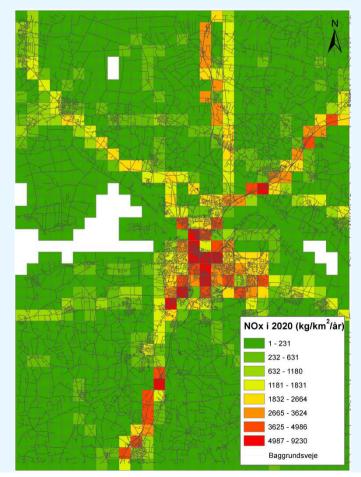
Input and output

- > Input
 - > traffic data on a GIS map
 - > receptor points
 - > meteorological data

- > regional background concentration data
- > emission data from other sources (optional)

> Output

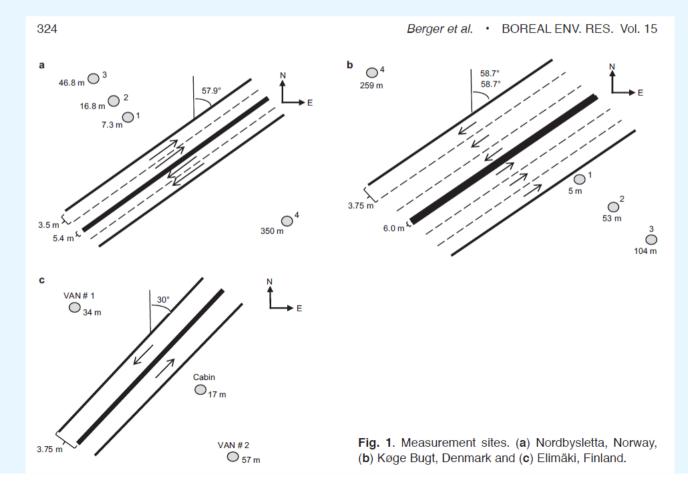

- > hourly concentrations for receptor points
- > concentration data: statistical and time-serie data
- > NO_x, NO₂, O₃, PM_{2.5} og PM₁₀, particle numbers, CO, and benzene
- > CO₂ emissions (based on fuel consumption)



May 6, 2013

Target versus background roads

> Smaller / more distant roads summarized as area sources



May 6, 2013

Validation of OML-HW

> Berger et al. 2010, 3 data set, 4 modells

May 6, 2013

Validation of OML-HW

> HIWAY2-AQ OML-Highway CAR-FMI WORM

Table 3 Coefficient of determination, R^2 or all models applied to all data, for both non-normalised and Q-normalised results

	HIWAY2-AQ HIWAY2-AQ Non-norm. <i>Q</i> -norm.		OML-Highway Non-norm.	OML-Highway <i>Q</i> -norm.	CAR-FMI Non-norm.		WORM Non-norm.	WORM <i>Q</i> -norm.	
Norwegia	n data								
St. 1	0.50	0.18	0.72	0.69	0.50	0.23	0.72	0.42	
St. 2	0.52	0.21	0.68	0.60	0.46	0.28	0.68	0.47	
St. 3	0.48	0.20	0.62	0.53	0.46	0.37	0.64	0.49	
Danish da	ata								
St. 1	0.38	0.18	0.75	0.65	0.49	0.25	0.65	0.28	
St. 2	0.34	0.24	0.74	0.61	0.41	0.36	0.70	0.36	
St. 3	0.31	0.27	0.71	0.56	0.43	0.50	0.71	0.43	
Finnish da	ata								
VAN#1	0.51	0.49	\checkmark	-	0.47	0.44	0.51	0.51	

Table 4. Relative bias, RB, for all nodels applied to all data, for both non-normalised and Q-normalised results.

	HIWAY2-AQ Non-norm.	HIWAY2-AQ <i>Q</i> -norm.	OML-Highway Non-norm.	OML-Highway Q-norm.	CAR-FMI Non-norm.		WORM Non-norm.	WORM <i>Q</i> -norm
Norwegia	an data		\frown					
St. 1	0.02	-0.16	-0.21	-0.22	-0.11	-0.16	-0.31	-0.34
St. 2	0.13	-0.07	-0.19	-0.19	0.03	-0.02	-0.26	-0.29
St. 3	0.12	-0.10	-0.20	-0.22	0.18	0.12	-0.24	-0.28
Danish d	ata		1 1					
St. 1	0.16	-0.27	0.04	-0.18	0.42	0.08	0.11	-0.22
St. 2	0.15	-0.35	0.00	-0.30	0.67	0.24	0.13	-0.26
St. 3	0.06	-0.42	0.01	-0.31	0.74	0.29	0.10	-0.28
Finnish d	ata							
VAN#1	-0.13	-0.14		_	0.09	0.09	-0.48	-0.49

May 6, 2013

Validation for NO_x and NO_2 in 2003

All wind directions

80 NO_x 70 - NOx Obs. Concentration (ppb) 60 NOx OML --- NO2 Obs 50 NO2 OML 40 30 20 NO_2 10 0 50 150 0 100 200 250 300 Distance from road (m)

Køge Bugt Motorway

(Jensen et al. 2004a,b)

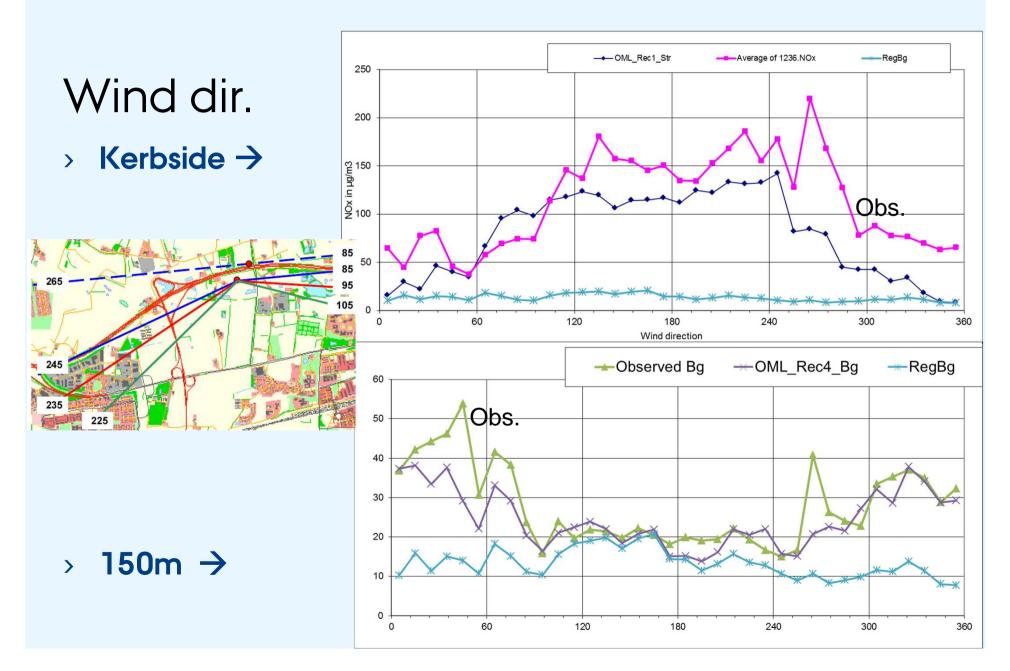
May 6, 2013

Newer Danish data set (Highway 21)

> Only two stations + met. mast, two month of data

Ellermann, T., Jensen, S.S., Ketzel, M., Løfstrøm, P. & Massling, A. 2009: Measurements of air pollution from a Danish highway. Research Note from NERI 254. http://www.dmu.dk/Pub/AR254.pdf

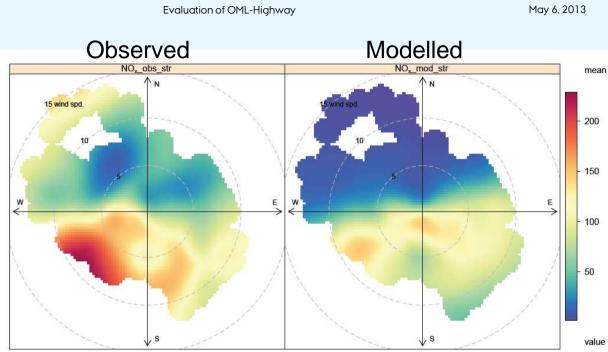
May 6, 2013

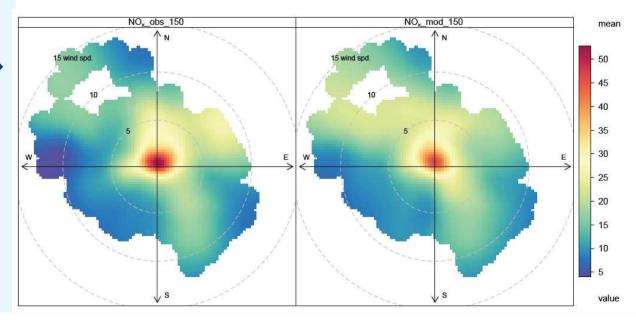

Newer Danish data set (Highway 21)

Department of Environmental Science

Evaluation of OML-Highway

May 6, 2013

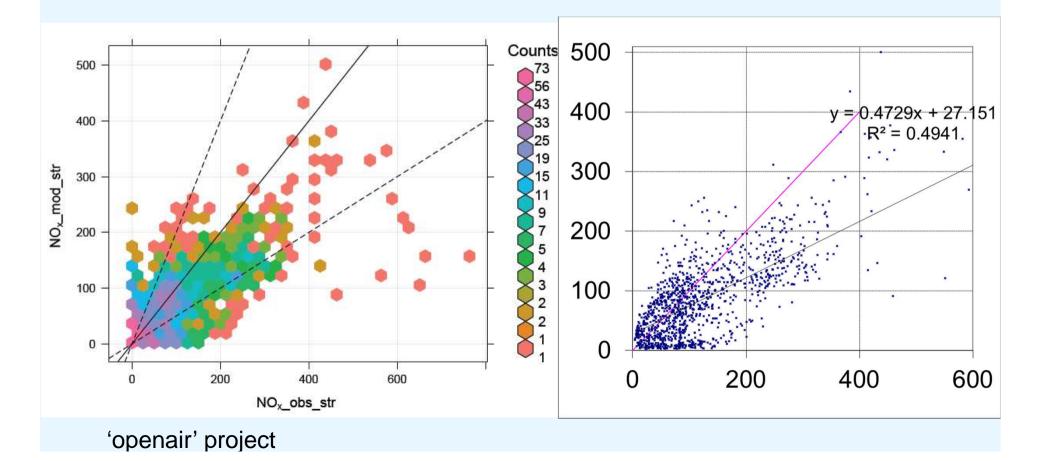



Wind dir.+WS

- Polar plots using
 'openair'
- \rightarrow Kerbside \rightarrow

> monitor@150m \rightarrow

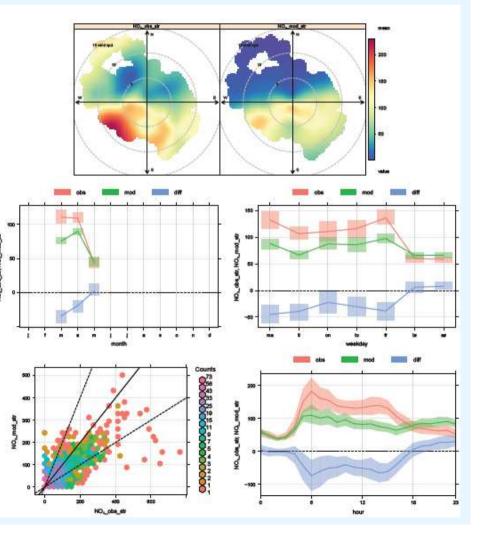
Ref.: David Carslaw and Karl Ropkins (2013). openair: Opensource tools for the analysis of air pollution data. R package version 0.8-5



May 6, 2013

More validation plots in 'openair'

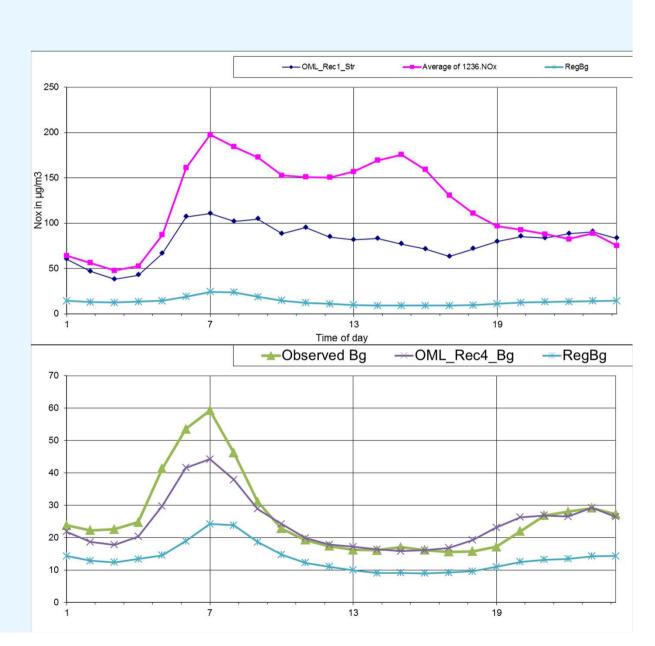
> ('Hexbin') Frequency-scatterplots


May 6, 2013

More validation plots in 'openair'

 Combine statistics and plots as model performance indicators

weekday	n	FAC2	MB	MGE	NMB	NMGE	RMSE	r	COE
mandag	208	0.52	-44.9	70	-0.34	0.53	94	0.72	0.244
tirsdag	211	0.45	-39.1	62	-0.37	0.59	89	0.61	0.152
onsdag	216	0.43	-22.2	62	-0.20	0.56	90	0.75	0.396
torsdag	180	0.47	-30.5	65	-0.26	0.56	86	0.66	0.205
fredag	167	0.57	-38.4	61	-0.28	0.44	78	0.75	0.323
lørdag	203	0.57	6.2	36	0.10	0.59	47	0.50	0.067
søndag	216	0.58	8.0	35	0.14	0.60	47	0.40	0.083


season	n	FAC2	MB	MGE	NMB	NMGE	RMSE	r	COE
spring (MAM)	1401	0.51	-22	55	-0.22	0.55	78	0.67	0.26

Time of day

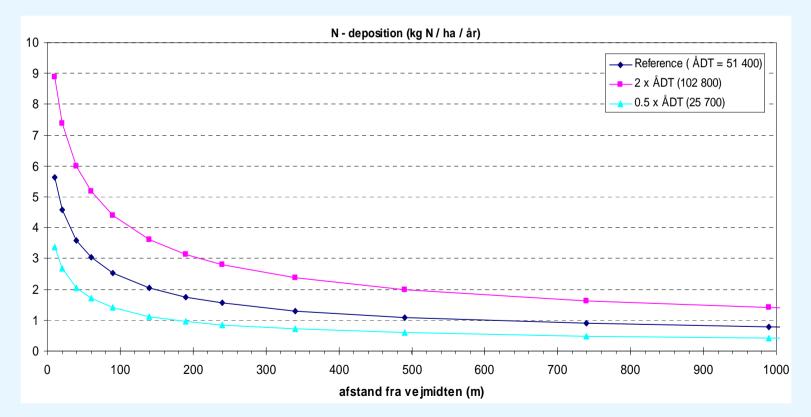
> Kerbside

Evaluation of OML-Highway

May 6, 2013

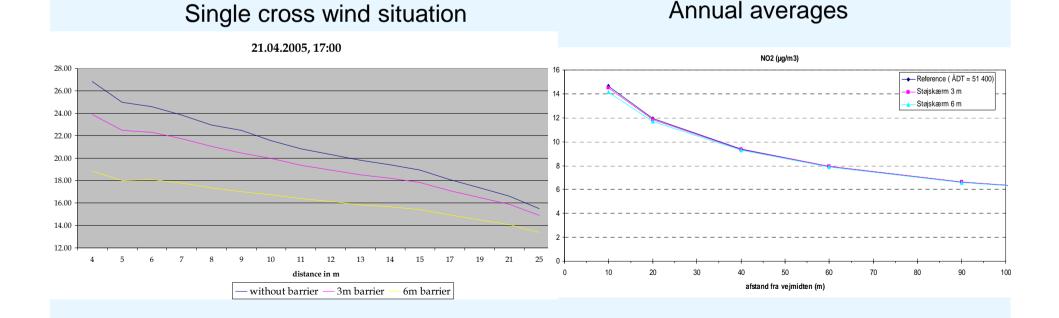
> 150m

May 6, 2013


Application of OML-Highway

- > N-Deposition
- > Impact of noise barriers
- > Impact of tunnels on adjacent AQ
- Systematic mapping of AQ and population exposure along motorway network (present / future scenarios)

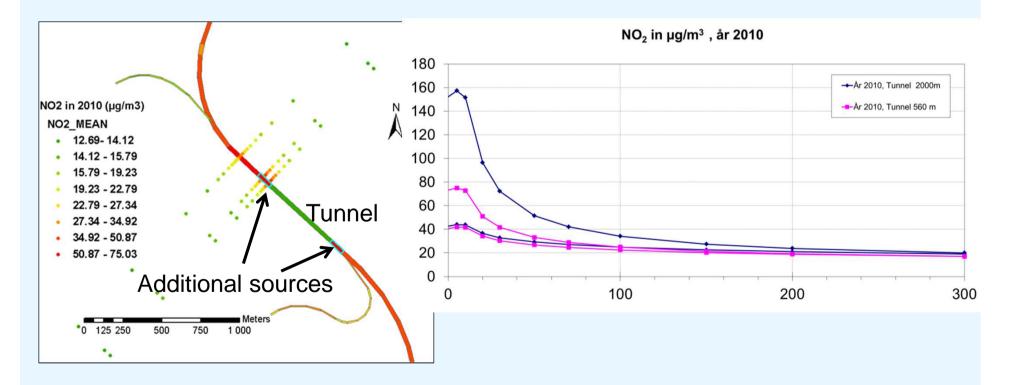
May 6, 2013


N-deposition in sensitive nature areas

> Limit of 5...25 kg N / (ha a) dependent on nature type

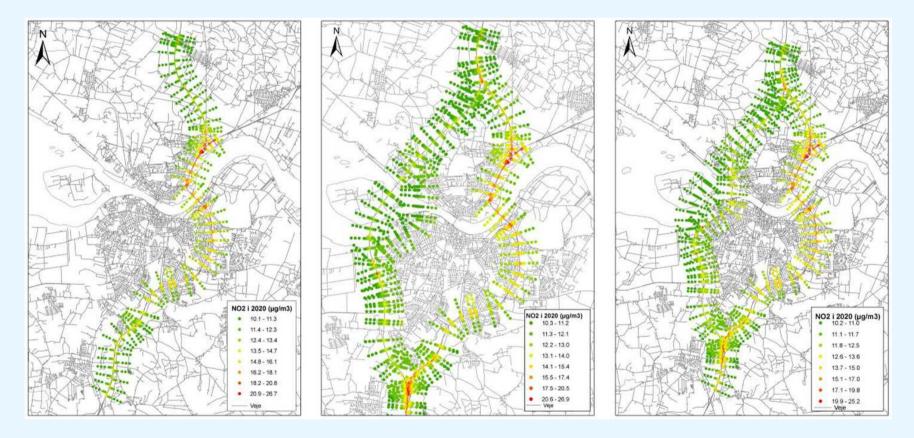
Impacts of noise walls on AQ

- > Reduction larger for 6 m high noise barrier than 3 m high noise barrier
- > Reduction largest close to noise barrier and reduction diminishes quickly with distance
- > Effect is due to larger initial dispersion height of plume due to barrier
- > Less reduction for annual levels due to impacts for all wind directions



May 6, 2013

Treatment of tunnels in OML-HW

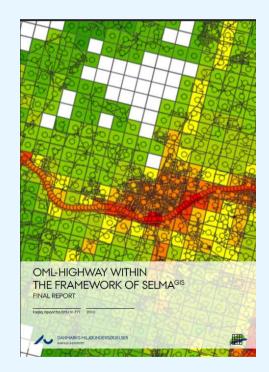

> Treated as addition al line source at tunnel opening

May 6, 2013

Receptor points along motorways

- > Receptor points up to 1,000 m from motorway
- > Residential addresses joined to nearest receptor point

May 6, 2013


Conclusion

- > OML-Highway model is a user-friendly GIS-based model for assessment of air quality along roads in open terrain
- OML-Highway model has been successfully evaluated against measurement datasets from Denmark and Norway for NO_x and NO₂
 - > more development and model inter-comparison exercises
- > Lessons from new Danish Validation dataset (preliminary)
 - > OK for the 150 m location
 - > Up-wind dispersion missing for the near road location (effect of trees / cut / traffic turbulence) → combine OML-Highway + OSPM
 - > Traffic / emission variation needs refinement
- > Openair toolbox is very helpful

May 6, 2013

Acknowledgement

- > Funding
 - Danish Road Directorate has financed OML-Highway model development and EIA applications
- > Report in English
 - > Jensen, S.S., Becker, T., Ketzel, M., Løfstrøm, P., Olesen, H.R., Lorentz, H. (2010): OML-Highway within the framework of SELMAGIS. 26 p, NERI Technical Report No. 771. <u>http://www.dmu.dk/Pub/FR771.pdf</u>.
- > Validation article
 - > Berger, J., S. E. Walker, B. Denby, R. Berkowicz, P. Løfstrøm, M. Ketzel, J. Härkönen, J. Nikmo and A. Karppinen, 2010. Evaluation and intercomparison of open road line source models currently in use in the Nordic countries, Boreal Env. Res., 15.

Department of Environmental Science

Evaluation of OML-Highway

May 6, 2013

Thank you for your attention