

Experiences using the Delta Tool for model quality assurance

Helge R. Olesen and Matthias Ketzel

A broad perspective

- > The classic single stack problem.
- >The "EU Directive problem" where the Delta Tool comes in.

Classic single stack problem

- You have a single source surrounded by arcs of monitors.
- > How do you evaluate model performance?
- » "Model Validation Kit"
- >ASTM standard guide D6589 on statistical evaluation of dispersion models

John Irwin

Video...

Inherent incertainty

- >The atmosphere is turbulent with stochastic variations
- >Nature provides us with individual realisations.
- > With our models we can only hope to predict ensemble averages.

Helge R. Olesen.

Helge R. Olesen.

Classic stack problem

Conclusion already established in the eighties:

 Pairing model results and observations with respect to time and space is not useful when dealing with a single stack.

It yields a correlation close to zero.

Parameters we may consider

- >Arc-wise maxima (Model Validation Kit)
- Near centerline concentrations (ASTM Standard Guide)
- >Crosswind integrated concentrations (Cy) and sigma's (Sy) (John Irwin's most recent recommendations)

John Irwins latest recommendations

- Compare group geometric mean values of observed Cy and Sy values.
 - John states: "We place too much emphasis on the importance of Cmax in our model evaluations; Cmax is dependent upon Cy and Sy (not the other way around)."
- >More on John's work at his website www.jsirwin.com
- >(you may also go though the URL mentioned in my abstract)

The "EU Directive problem"

- >Models are used to assess compliance with limit values at numerous locations in Europe.
- >How should requirements for model performance be defined? In other words: What "Model Quality Objectives" will it make sense to put into a legal framework?
- The Delta Tool is work in progress to address this problem. JRC Ispra leads the work.
- >Philippe Thunis has a presentation tomorrow on the Delta Tool.

Differences between the two problems

- >The classic single stack problem: We try to model a highly fluctuating signal.
 - If we compare observations and model results in space and time correlation will be close to zero.
- > The "EU Directive problem": For the majority of monitoring sites multiple sources interact. Background pollution is important. For the majority of sites we deal with a relatively smooth signal.

Further differences between problems

- >The classic single stack problem: The emission source strength is known.
- >The "EU Directive problem": The emission inventory is part of the problem. The quality of the total system is an issue: emission modelling plus atmospheric transport and chemistry modelling.

FAIRMODE Meeting – draft agenda first day

Wednesday, 10th of April 2013

Elzenveld Conference Center in Antwerp, Belgium

09:00-09:45	Registration and welcome coffee	
09:45-10:15	Welcome by the host	Elke Trimpeneers (IRCELINE) & Stijn Janssen (VITO)
10:15-10:45	The Air Policy Review process – status quo and future developments	DG Environment (<i>tbc</i>)
10:15-11:00	FAIRMODE – where we are within working group 2	Stefano Galmarini (JRC)
11:00 -11:20	Coffee Break	
11:20-12.30	WG2 – Quality assurance and benchmarking	Stefano Galmarini (JRC)

SG4: Benchmarking and Model Quality Objectives

- Experiences/comments from participants regarding Model quality objectives and discussion
- Discussion
- DELTA tool: Overview of updates
- DELTA tooi: IVIS experiences & feedback

The Delta Tool

- > A set of software. The user prepares
 - 1. Data for one year of observations for a number of stations.
 - 2. Model results at the corresponding locations.
- The system provides a common frame of reference for evaluating model performance.
- It is possible to make some exploratory analyses within the system.
 However, the core is a Benchmarking report

Notes on the Benchmarking tool

> It is in a testing fase.

- >The tool operates with performance criteria, but these are provisional and subject to discussion within the Fairmode community.
- >There have been several versions of the tool with some major changes.
- >For normalisation the plots now use measurement uncertainty (Delta Tool version 3.x).

-	Torino_	AcquiTe	Erbo	Meda	REZZATO	Bassano	SGiovan
2	Borgaro	BIELLA	Cantu	Milano	SAREZZO	Schio	Trieste
-	Druento	COSSATO	Bormio	VIMERCA	S_ROCCO	VICENZA	MODENA_
-	ALESSAN	PONZONE	Morbegn	Milano	Borgo_V	Conegli	Monte_C
-	ALESSAN	VERRONE	Arcondt	Lacchie	Riva_de	Treviso	EMEP_Is
-	CUNEO_A	Varese_	Arese	Bergamo	Roveret	Venezia	-
-	Alba	Saronno	Cormano	0510_50	Trento	Monceli	
	ASTLDA	Colico	Milano_	Brescia	Trento_	Rovigo_	

Summary of statistics: Do results comply with performance criteria?

Delta Tool test data set: POMI (2005), Chimere – challenging Italian data set. NO₂

Some remarks on the Delta Tool

- >Keep in mind: What do the underlying data represent?
- >Establishing a common frame of reference is a good thing. It allows us to make a proper comparison of comparable results.
- However, care should be taken, especially when it comes to policy aspects.
- >The data underlying two different benchmarking reports may represent two different challenges.

Remarks - continued

- >As an extreme, imagine the classic single stack problem put into the Delta Tool framework.
- > Poor performance in respect to the target plot is not necessarily an indicator of *unacceptable* model performance – it depends on the challenge you pose to a model. Further, you should consider fitness for purpose.

Examples where high correlation is hard to achieve

- >A site under influence from a major point source is difficult to model correctly.
- >A traffic site where traffic data are inaccurate, possibly just slightly shifted in time.

Delta Tool: Practical aspects

- >Not everything runs smoothly when you are a first time user. However, feedback to the developers can improve this.
- >A number of minor issues were brought up at the Fairmode plenary in April, regarding such things as better explanations of graphics.
- There is so far not a set of explanatory notes, which could ease interpretation of the Benchmarking reports.

Conclusion

- >Those of you working with modelling in the context of the European Air Quality Directive should sooner or later acquaint yourself with the Delta Tool.
- > Report any issues you may find to the developers.
- > We should step carefully as to how the Delta Tool eventually should be used in conjunction with the Air Quality Directive. We should not impose unreasonable requirements on ourselves.