ADAPTATION OF THE REYNOLDS STRESS TURBULENCE MODEL FOR ATMOSPHERIC SIMULATIONS

Radi Sadek¹, Lionel Soulhac¹, Fabien Brocheton² and Emmanuel Buisson²

¹Laboratoire de Mécanique des Fluides et d'Acoustique, Ecole Centrale de Lyon, France ²NUMTECH, France

15th Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes Conference

Outline

CENTRALE LYON

- **1**. Introduction and motivations
- 2. Reynolds Stress model
- 3. Atmospheric RSM constants
- 4. Validation of the model
- 5. Conclusions and perspectives

1 – Introduction and motivations

1 – Introduction and motivations

Research issues in atmospheric CFD modeling

- Atmospheric CFD simulations (particularly RANS k-ε) are often used
 - For local scale wind engineering
 - For dispersion in complex urban area with obstacles
 - For risk and safety assessment in industrial areas

1 – Introduction and motivations

Research issues in atmospheric CFD modeling

Different issues have to be properly solved

- Boundary conditions over the surface layer?
- Anisotropy of the turbulence?
- "Standard" or "atmospheric/Duynkerke" constants?
- Value of the turbulent Schmidt number?
- Large uncertainty and user-dependent variability when comparing with field measurements

• Objectives of this work

- Introduce anisotropy of turbulence using Reynolds Stress Model
- Develop a 1D model for the entire Atmospheric Boundary Layer
- Provide parameterizations and boundary conditions for 3D CFD calculations

2 – Reynolds Stress model

2 – Reynolds Stress model RSM equations

CENTRALE LYON

Reynolds Stress equation

• Turbulent dissipation rate equation

• Turbulent viscosity

2 – Reynolds Stress model RSM constants

CENTRALE LYON

• The preceding equations depends on 5 constants

 $\textbf{C}_{\!_{\mu}}\textbf{,}~\sigma_{\!_{k}}\textbf{,}~\sigma_{\!_{\epsilon}}\textbf{,}~\textbf{C}_{\!_{\epsilon 1}}\textbf{,}~\textbf{C}_{\!_{\epsilon 2}}$

- Pressure-strain term ϕ_{ii}
 - We choose the model of Gibson and Launder (1978)
 - This model introduces 5 other constants :

 $C_{_1}, C_{_2}, C_{_1}', C_{_2}', C_{_L}$

• The "standard" values of these constants are:

C _μ	σ_{k}	σ _e	C _{ε1}	C _{ε2}	C ₁	C ₂	C' 1	C'2	CL
0.09	1.0	1.3	1.44	1.92	1.8	0.6	0.5	0.4	0.39

2 – Reynolds Stress model RSM constants

- "Standard" constants are not adapted for the atmosphere
- Consider the Surface Boundary Layer
 - For example, the C_μ constant controls the level of turbulent kinetic energy k:

$$B = \frac{k}{u_*^2} = \frac{1}{\sqrt{C_\mu}}$$

- Wind tunnel measurements give B = 3.33 (i.e. C_{μ} = 0.09)
- Atmospheric measurements (Panofsky and Dutton, 1984) give B = 5.48 (i.e. C_{μ} = 0.033)
- It is necessary to define "atmospheric" constants:
 - Duynkerke (1988) proposed a set of constants for the k-ε model
 - In this work, we propose a new set of constants for the Reynolds Stress Model

3 – Atmospheric RSM constants

• In the Atmospheric Surface Layer

• We assume a 1D Atmospheric Surface Layer, horizontally uniform

3 – Atmospheric RSM constants

Determination approach

• We identify the 1D RSM equations with the following analytical profiles

$$\overline{u}(z) = \frac{u_{*}}{\kappa} ln\left(\frac{z}{z_{0}}\right)$$

$$\varepsilon(z) = \frac{u_{*}^{3}}{\kappa z}$$

$$\overline{u'^{2}} = \alpha_{x}^{2}u_{*}^{2}$$

$$\overline{v'^{2}} = \alpha_{y}^{2}u_{*}^{2}$$
with
$$\begin{cases} \alpha_{x} = 2.46 \\ \alpha_{y} = 1.9 \\ \alpha_{z} = 1.9 \end{cases}$$
(Panofsky and Dutton, 1984)
$$\overline{w'^{2}} = \alpha_{z}^{2}u_{*}^{2}$$

$$\overline{u'w'} = -u_{*}^{2}$$
11

3 – Atmospheric RSM constants Determination approach

CENTRALELYON

- It provides a system of equations for the constants:
- $\overline{u'^{2}} \text{ equation } -C_{1}\frac{\alpha_{x}^{2}}{B} + C_{1}'C_{L}B^{\frac{1}{2}}\kappa\alpha_{z}^{2} \left[\frac{2}{3}C_{2}\left(2 C_{2}'\kappa B^{\frac{3}{2}}C_{L}\right) 2\right]\frac{\kappa z}{u_{*}}\frac{\partial \bar{u}}{\partial z} + \frac{2}{3}(C_{1} 1) = 0$ $\overline{v'^{2}} \text{ equation } -C_{1}\frac{\alpha_{y}^{2}}{B} + C_{1}'C_{L}B^{\frac{1}{2}}\kappa\alpha_{z}^{2} \frac{2}{3}C_{2}\left(-1 C_{2}'\kappa B^{\frac{3}{2}}C_{L}\right)\frac{\kappa z}{u_{*}}\frac{\partial \bar{u}}{\partial z} + \frac{2}{3}(C_{1} 1) = 0$ $\overline{v'^{2}} \text{ equation } -C_{1}\frac{\alpha_{z}^{2}}{B} 2C_{1}'C_{L}B^{\frac{1}{2}}\kappa\alpha_{z}^{2} \frac{2}{3}C_{2}\left(-1 2C_{2}'\kappa B^{\frac{3}{2}}C_{L}\right)\frac{\kappa z}{u_{*}}\frac{\partial \bar{u}}{\partial z} + \frac{2}{3}(C_{1} 1) = 0$ $\overline{v'^{2}} \text{ equation } -C_{1}\frac{\alpha_{z}^{2}}{B} 2C_{1}'C_{L}B^{\frac{1}{2}}\kappa\alpha_{z}^{2} \frac{2}{3}C_{2}\left(-1 2C_{2}'\kappa B^{\frac{3}{2}}C_{L}\right)\frac{\kappa z}{u_{*}}\frac{\partial \bar{u}}{\partial z} + \frac{2}{3}(C_{1} 1) = 0$ $\overline{v'^{2}} \text{ equation } \frac{1}{B}\left(C_{1} + \frac{3}{2}C_{1}'\right) + \left[C_{2}\left(1 \frac{3}{2}C_{2}'\kappa B^{\frac{3}{2}}C_{L}\right) 1\right]\alpha_{z}^{2}\frac{\kappa z}{u_{*}}\frac{\partial \bar{u}}{\partial z} = 0$
 - Which provides, after resolution, a set of "atmospheric" constants:

4 – Validation of the model

4 – Validation of the model Methodology of the 1D numerical model

- We have developped a numerical 1D model for the ABL
 - Flow is horizontally homogenous:

$$\overline{\mathbf{w}} = \mathbf{0}$$
 and $\frac{\partial}{\partial \mathbf{x}} = \frac{\partial}{\partial \mathbf{y}} = \mathbf{0}$

- Pressure gradient and Coriolis force in geostrophic balance
- 1D equation model of mean wind speed, including Coriolis effect:

$$\frac{\partial \bar{u}}{\partial t} = -\frac{\partial \overline{u'w'}}{\partial z} + f(\bar{v} - V_g) \quad \text{and} \quad \frac{\partial \bar{v}}{\partial t} = -\frac{\partial \overline{v'w'}}{\partial z} - f(\bar{u} - U_g)$$

- Reynolds Stress Model as turbulence closure model
- Equations are solved numerically until a steady state
- We apply the model on the overall ABL and compare it with empirical results

Velocity profile:

• For example for $U_g = 5m.s^{-1}$, $z_0 = 0.01m$, $\phi = 45^{\circ}$

4 – Validation of the model

Results in neutral conditions

• Turbulence profiles (normalized by the ground value):

• For example for
$$U_g = 5m.s^{-1}$$
, $z_0 = 0.01m$, $\phi = 45^{\circ}$

Ekman's theory predicts the twisting of the flow in the Ekman layer:

4 – Validation of the model

Results in neutral conditions

$$\begin{cases} u = U_g \left[1 - \exp(-az)\cos(az) \right] \\ v = \operatorname{sgn}(f) U_g \exp(-az)\sin(az) \end{cases} \quad \text{with} \quad a = \sqrt{\frac{|f|}{2K_M}} \end{cases}$$

• Simulation of the Ekman Layer with the 1D model:

• The Rossby similarity theory gives:

$$\frac{U_g}{u_*} = \frac{1}{\kappa} \sqrt{\left(\ln \left(\frac{u_*}{fz_0} \right) - B \right)^2 - A^2}$$

A and B are empirical constants

Sensibility of the 1D model to control parameters

Atmospheric Boundary Layer height:

• The Rossby-Montgomerry equation

 $h = \frac{cu_*}{c}$ with $c \approx 0.26$

CENTRALE LYON

- Velocity profile:
 - For example for $U_g = 5m.s^{-1}$, $z_0 = 0.01m$, $\phi = 45^{\circ}$

0

0

0.5

 $\overline{u'^2} / \overline{u'^2}_{sol}$

For example for $U_g = 5m.s^{-1}$, $z_0 = 0.01m$, $\phi = 45^{\circ}$ \diamond \diamond ٥, Hunt Gryning Gryning et al. (1988) \diamond \diamond et al. (1987) et al. (1987) Modèle 0.8 re ♦ ♦ ♦ Rij⁼ε Hunt Hunt 0.8 - \diamond \diamond 0.8 \diamond et al. (1988) et al. (1988) 01 \diamond \diamond Modèle loo o Rij⁻∂ Modèle \diamond <mark>◇ ◇ ◇</mark>R_{ij⁼}ε 01 z / h_{CL} \diamond ^{. 6.6} ^{0.6} z / h_{CL} \diamond **~~~~~~~** 0.4 0.4 0.4 0.2 -0.2 -0.2 -

0

0

1.5

Turbulence profiles (normalized by the ground value):

4 – Validation of the model

Results in stratified conditions

0

0

Unstable conditions

1

 $\overline{v'^2}$ / $\overline{v'^2}_{sol}$

1.5

2

0.5

21

6

 $\frac{2}{w'^2} / \frac{4}{w'^2}$ sol

CENTRALE LYON

• For example for
$$U_g = 5m.s^{-1}$$
, $z_0 = 0.01m$, $\phi = 45^{\circ}$

Stable conditions

CENTRALE LYON

Relation between U_g and u_{*}:

$$\frac{U_g}{u_*} = \frac{1}{\kappa} \sqrt{\left(\ln \left(\frac{u_*}{fz_0} \right) - B \right)^2 - A^2}$$

A and B are dependent on stability, measured empirically

CENTRALELYON

5 - Conclusions and perspectives

Conclusions

- Development of a **new set of atmospheric constants** for the Reynolds Stress turbulence model
- **1D simulations** of the Atmospheric Boundary Layer with this Reynolds Stress Model, **including Coriolis effects**
- Validation against empirical results
- Perspectives
 - Validation in more complex configurations
 - Evaluation of the effect of anisotropy on dispersion modeling
 - Unified approach between "atmospheric" and "standard" RSM constants (see Poster H15-166)

Thank you for your attention 🙂

Questions ?